
1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

Android Malware Detection via (Somewhat) Robust Irreversible
Feature Transformations

Qian Han1, V.S. Subrahmanian1 and Yanhai Xiong1

1Department of Computer Science and the Institute for Security Technology and Society
Dartmouth College, Hanover, NH 03755, USA

As the most widely used OS on earth, Android is heavily targeted by malicious hackers. Though much work has been done
on detecting Android malware, hackers are becoming increasingly adept at evading ML classifiers. We develop FARM, a Feature
transformation based AndRoid Malware detector. FARM takes well-known features for Android malware detection and introduces
three new types of feature transformations that transform these features irreversibly into a new feature domain. We first test
FARM on 6 Android classification problems separating goodware and “other malware” from 3 classes of malware: rooting malware,
spyware, and banking trojans. We show that FARM beats standard baselines when no attacks occur. Though we cannot guess all
possible attacks that an adversary might use, we propose three realistic attacks on FARM and show that FARM is very robust
to these attacks in all classification problems. Additionally, FARM has automatically identified two malware samples which were
not previously classified as rooting malware by any of the 61 anti-viruses on VirusTotal. These samples were reported to Google’s
Android Security Team who subsequently confirmed our findings.

Index Terms—Android, Machine Learning, Feature Transformation, Malware Detection, spyware, banking trojans, rooting malware

I. INTRODUCTION

THE Android platform is the most widely used operating
system in the world today (1)1. Because it is both very

popular and open source, it is subject to a wide variety of
attacks (2; 3; 4) involving theft of credentials, bank fraud,
click fraud, ransomware, adware, SMS fraud, and more.

While there has been extensive work on Android malware
analysis and detection, (5; 6; 7; 8; 9; 10; 11),

we know that when a malware is detected by anti-virus
vendors or white hats, the malicious hackers involved try
to evade the signature. Though no one can predict all the
ingenious evasion methods that malicious hackers might come
up with in the future, it is important that malware detectors
try to be robust to evasion methods.

We propose FARM (short for Feature transformation based
AndRoid Malware detector), a framework for detecting An-
droid Rooting Malware which is robust to certain types of at-
tacks that we might expect malicious hackers to try out. Given
a set of standard features used in the literature for Android
malware prediction in general, our first major contribution is a
set of three new and broad classes of feature transformations
that irreversibly map the original feature space into a new
feature space.
• Landmark based transformations. Our first class of fea-

ture transformations is based on the idea of landmarks.
The basic idea is similar to triangulation: every point
in the original feature space can be characterized by
its distance from a given set of landmarks. Because the
selection of distance functions and landmark points is
flexible, this is not one transformation, but an entire class
of transformations. The adversary will have difficulty

Manuscript received; revised.
1https://www.c-sharpcorner.com/article/what-is-the-most-popular-

operating-system/

figuring out what a specific implementation of FARM
is doing, even if they know all the original features.

• Feature clustering based transformations. Our second
innovation is a class of transforms that clusters sets
of similar features together by inspecting the original
features. If two features have similar values in the original
training data, then those two features should end up in
the same cluster. Each cluster of features generates a new
feature (one per cluster) having a value computed from
the feature values in that cluster. This too is not one trans-
formation, but a class of transformations because FARM
can use one of any number of clustering algorithms and
pick whatever reasonable hyper-parameters it feels are
appropriate for that clustering algorithm. This is also hard
for an adversary to guess, even if they know the entire
training set.

• Correlation graph based transformations. This is an idea
similar to that above. The original features in the training
data end up as nodes in an undirected graph. An edge
linking two features is weighted by a selected correlation
coefficient (e.g. Pearson’s correlation coefficient). The
features are then clustered together and each feature-
cluster corresponds to a new feature in a manner similar
to that in the preceding transformation.

Our second major contribution is an extensive set of exper-
iments that combine the transformed features with standard
classifiers and a late fusion step. Specifically, we test the
FARM approach on 6 Android malware classification prob-
lems: (i) rooting apps vs. goodware, (ii) rooting apps vs. other
malware, (iii) spyware vs. goodware, (iv) spyware vs. other
malware, (v) banking trojans vs. goodware, and (vi) banking
trojans vs. other malware. Each of the 6 Android malware
classification problems is tested on two types of data: one
where no samples in the data are isomorphic, and another

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2

where only one copy of isomorphic samples is retained in the
data.2 Thus, in total, there are 12 sets of experiments that we
conduct to assess the performance of FARM.

When no attacks are present, our 10-fold cross-validation
experiments show that FARM achieves an improvement in
the F1-score of 1.05-6.43% over the baseline classifiers. The
percentage improvement3 of FARM vs. the best baseline is
summarized in Table I. This suggests that in the absence of
attacks, FARM outperforms strong baselines – though not by
a huge margin.

TABLE I: Percentage improvement of FARM over the best
baseline on f1-score

Classification Problem Improvement
Goodware vs. Rooting (No-Isomorphic) 6.02%
Goodware vs. Rooting (Isomorphic) 4.38%
Goodware vs. Banking Trojan (No-Isomorphic) 3.92%
Goodware vs. Banking Trojan (Isomorphic) 1.60%
Goodware vs. Spyware (No-Isomorphic) 2.64%
Goodware vs. Spyware (Isomorphic) 1.46%
Other-malware vs. Rooting (No-Isomorphic) 2.80%
Other-malware vs. Rooting (Isomorphic) 2.27%
Other-malware vs. Banking Trojan (No-Isomorphic) 7.21%
Other-malware vs. Banking Trojan (Isomorphic) 6.43%
Other-malware vs. Spyware (No-Isomorphic) 2.12%
Other-malware vs. Spyware (Isomorphic) 1.05%

However, when certain types of attacks on classifiers occur,
FARM strongly outperforms the baselines, yielding our third
major contribution. Malicious hackers continuously look for
methods to evade FARM. We propose three potential attacks
and evaluate the robustness of FARM w.r.t. these attacks. Our
10-fold cross-validation experiments show that FARM is more
robust in the face of these attacks than past work. 4 An impact
score less than 1 says that FARM is more robust against
the attack than the baselines. The smaller the impact score,
the better. Moreover, for example, an impact score of 0.2
under a given attack says that the adverse impact on FARM
is 20% of the adverse impact on the baseline, i.e. FARM is 5
times more resilient than the baseline. We see in Tables VII
and VIII that the impact score of FARM under the first two
attacks is consistently lower than 1. This is also the case with
the third kind of attack (Table IX). Here, it is worth noting
that the impact score of FARM actually goes into negative
territory, suggesting that FARM actually performs better under
the third type of attack than when there is no attack. This is
counter-intuitive and we will discuss why later in Section VI.
Tables VII, VIII and IX below respectively show the impact
of the three types of attacks on all 12 problems in the case of
the baseline vs. FARM. We see that FARM is often many times
better than the baseline in all of these cases. On the first type of

2Two Android samples are considered isomorphic if they have the same
feature vector.

3Percentage improvement of FARM over the best baseline for classification
problem ℘ is given by the formula F1(FARM)

F1(Baseline)
− 1.

4The impact score of attack a on FARM is given by
RedF1(FARM,a)
RedF1(baseline,a)

where RedF1(Alg, a) is the reduction in
F1 score of algorithm Alg when the attack a happens, i.e.
RedF1(Alg, a) = F1Score(Alg, no attack)− F1Score(Alg, attack a)

attack, we see that impact score of FARM is between 10.47%
to 72.12%, i.e. FARM varies may be up to almost 10 times
more resilient to this attack than the baseline. On the second
type of attack, FARM’s impact score varies from 10.25% to
74.42%, showing almost a similar range of greater robustness
than the baseline. On the third type of attack, FARM’s impact
score ranges from -3.9 to +6.14, suggesting the FARM, while
often much more robust, is not always more robust. Overall, of
the 36 situations tested (12 times 3 tables), FARM’s superior
robustness was established in 35 of 36 cases. That said, we
do not claim that FARM is robust against all kinds of attacks
- just the three types of attacks proposed in this paper.

Finally, we note that FARM has found 2 malware samples
that were previously not known to be rooting malware to
any of the 61 anti-virus engines on VirusTotal (as well as to
Google). We reported these two samples to Google’s Android
Security team who confirmed the findings.

Figure 1 shows the architecture of the FARM framework
— this paper is organized in a manner that is consistent with
this architecture. Section II discusses related work on Android
malware detection. Our FARM dataset consisting of Android
goodware, rooting malware, spyware, banking trojans, and
other malware is discussed in Section III. As we build on
top of basic features used in other work, we only provide a
brief description of those in Section IV. Section V contains a
comprehensive description of the three feature transformation
techniques (landmark features, feature clustering features, cor-
relation graph features) used in this paper. Experimental results
are presented and discussed in Section VI.

Fig. 1: The FARM Framework

II. RELATED WORK

We discuss 2 types of related work: work on Android mal-
ware detection in general, and work on feature transformation
techniques for machine learning.

Literature on general Android malware detection tech-
niques. We discuss two categories of related work here: (i)
static analysis based detection of known malicious patterns
in source code and other relevant metadata, and (ii) dynamic
analysis which tests an Android APK by executing it in real-
time and monitoring the results. Previous examples of malware
detection solutions include MaMaDroid (12), SigPID (9),
MADAM (13), the deep android malware detection sys-
tem (14), Hindroid (15), DREBIN (10), DroidAPIMiner (16),
CrowDroid (17), DroidScope (18) and MARVIN (19).

Static Analysis. DREBIN (10) and DroidAPIMiner (16) use
lightweight features based on static analysis to distinguish

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 3

Android malware. DREBIN detects 94% of the malware with
a low false positive rate while DroidAPIMiner achieves 99%
accuracy and 2.2% false positive rate. MaMaDroid (12) builds
a classifier to detect malware based on features extracted from
a behavioral model in the form of a Markov chain capturing
the sequence of API calls performed by an APK. (20) provides
a systematic study of permission-induced risk in APKs. Their
results show that with the top 40 risky permissions, the
detection rate with Random Forest reaches 0.9462 with a
false positive rate of 0.006. SigPID (9) develops methods to
identify significant permissions related to Android malware
prediction. They show that only 22 out of 135 permissions
are needed to achieve over 90% detection accuracy. (14) uses
static analysis and convolutional neural networks to separate
Android malware from goodware. Hindroid (15) develops
a heterogeneous information network and then uses meta-
path analysis to predict if a sample is benign or malicious.
(11) develops a regression model based on decompiled code
analysis to distinguish malware and goodware. (21) proposes
an end-to-end method for automatic feature engineering by
mining documents written in natural language. The results
achieve a 92.5% true positive rate with only 1% false positive
rate, which is comparable to the detectors based on man-
ually engineered features. (22) detects repackaged Android
malware via code heterogeneity analysis. They partition the
code into multiple dependence-based regions and each region
is classified independently based on behavioral features. (23)
performs Android malware family clustering efficiently with
novel malicious payload mining techniques.

Dynamic Analysis. CrowDroid (17) detects malicious appli-
cations that have benign names and versions. It also collects
and compares execution traces from users using a crowdsourc-
ing approach. DroidScope (18) analyses APKs that collect
native, Dalvik instruction traces and profiles API-level activity.
It also tracks information leakage through taint analysis.
MARVIN (19) uses machine learning to distinguish between
goodware and malware with static and dynamic analysis,
achieving a detection accuracy of 98.24%. MADAM (13)
develops methods using features at four levels: kernel, appli-
cation, user and package levels to detect malicious behaviors,
achieving over 96% accuracy and a low false positive rate.
DroidTrace (24) implements a dynamic analysis system by
using ptrace to monitor the selected system calls of the
target process, then executing classification according to their
sequence. (25) develops AuntieDroid based on MaMaDroid
and Chimp (26) (a crowdsourced method) to detect malware
with both static and dynamic analysis, yielding F-measure of
0.92. XManDroid (27) examines the use of transitive per-
missions in Android’s inter-process communication protocol
in order to detect privilege escalation attacks. (6) describes
the Pileup vulnerability using which malware can declare a
set of privileges and attributes in an older version of the
operating system until the system is updated to a newer
version. They show that attackers can attack thousands of
devices from different manufacturers, carriers, and countries.
They develop a detector that scans devices to capture exploits
based on the Pileup vulnerability. RootExplorer (8) studies
the challenging problem of finding root exploits in a different

way. They consider the fact that there are now commercial
grade “root providers”(7) including major corporations such
as Tencent, Baidu, and Qihoo who provide this as a service so
naive users can take certain actions that require root privileges
such as removing bloatware. Well-known Android malware
guru Romain Unuchek points out that “Users rooting their
own devices offer quite a gift to malware developers” (28)
as malicious hackers can use the code provided by root
providers to launch attacks. RootExplorer looks at root exploits
provided by such “root providers” and tries to detect them
effectively. Although not aimed for malware detection, we note
that CopperDroid (29) designs an automatic virtual machine
introspection based dynamic analysis system to reconstruct the
OS and Android-specific behaviors of Android malware which
could be leveraged for malware detection.

FARM differs from these prior malware detection efforts
in two broad respects: first, FARM focuses on developing a
method for malware detection that is robust in the presence
of various types of attacks while the above efforts do not
(with the exception of (30). Additionally, FARM looks at
12 classification problems in all spanning 3 different types
of Android malware (rooting malware, spyware, and banking
trojans). FARM develops 3 novel feature transformations for
these purposes and shows that these feature transformations
lead to greater robustness under certain types of adversarial
attacks.

To evaluate the robustness of the proposed feature trans-
formation techniques, we also investigated related literature
on attacks on defensive methods. (30) studies behaviors of
defenses relying on obfuscated gradients and how they can be
circumvented. The partition method is used by (31) to replace
a piece of malware with a number of “shallow processes” to
evade detection by system-call behavior based detectors. (32)
use common obfuscation methods to generate attack malware
samples. (33)’s MalGAN system generates malware samples
from a single feature vector. In particular, they add irrelevant
features to avoid detection of the original malware. (34) selects
features via optimization and adds them to malware samples
as a kind of attack. FARM use three attack models to modify
malware samples.

Literature on feature transformation techniques for ma-
chine learning. Most work on feature transformation applies
feature transformation techniques to reduce computational
complexity or improve object recognition accuracy. At the very
outset, we note that we are not aware of any efforts to use
feature transformation for Android malware prediction, nor
are we aware of any feature transformation efforts directed at
evading malware variants.

(35) evaluates the use of PCA-based feature transformation
and shows that in some cases, it can yield better performance
than feature selection. (36) proposes an adaptive conformal
transformation (ACT) algorithm in order to achieve better
classification results when training data is imbalanced. Cog-
nito (37) proposes the use of transformation trees for improved
feature engineering. (38) provides evidence to show that fea-
ture transformation may lead to improved predictive accuracy.
(39) designs an incremental matrix factorization framework
using a linear feature transformation of user and item latent

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 4

vectors, showing a relatively high accuracy and space-efficient
training process in an online scenario. (40) proposes a convex
radius-margin-based SVM model for joint learning of feature
transformation and an SVM classifier, and shows that it
outperforms both classical SVM and some advanced SVM-
based methods. (41) presents a novel semi-supervised learning
framework to improve visual classification performance using
a sequence of feature transformations.

In contrast to past work on feature transformations, FARM
proposes three entirely new classes of feature transformation
techniques that can be widely adapted for different machine
learning models. In addition, FARM introduces very realistic
potential attacks by adversaries and shows that it is robust to
these attacks — past work on feature transformations do not
present any insights on adversarial evasion.

III. THE FARM DATASET

In this section, we briefly introduce the FARM dataset which
consists of a mix of Android goodware, rooting malware,
spyware, banking trojans, and other malware. For a sample
to be tagged in one of these malware categories, we required
that there be at least 2 reports on Koodous5 confirming this
status. Table II summarizes the statistics of the FARM dataset.

TABLE II: Dataset description

Number of APKs Isomorphic No-Isomorphic
Goodware 3535 2999
Rooting Malware 1829 444
Banking Trojans 7107 1061
Spyware 3247 841
Other-Malware (Not Rooting) 4596 2081
Other-Malware (Not Banking Trojans) 3973 1806
Other-Malware (Not Spyware) 4382 1922

We say that two APKs are isomorphic if they have the same
set of API features. While the description of the “standard”
features used by us appears in the next section, we note
that using isomorphic samples for 10-fold cross-validation
is fundamentally wrong because two malware samples (with
different hashes) may end up with the same feature vectors. If
one of these is in the training set and one in the validation
set, then the testing protocol is severely compromised and
will inflate the predictive accuracy results. We therefore have
two versions of our dataset: the No-Isomorphic version has no
isomorphic samples in it, while the With-Isomorphic dataset
allows the isomorphic samples to persist. We report our main
experimental results on both versions of the FARM dataset
for the sake of completeness and clarity. We asked a few
cybersecurity experts why the number of malware samples
that are isomorphic is so large. The reason seems to be that
malware developers build a piece of malware and deploy
it - but at some point in time, cybersecurity firms develop
signatures to detect it. At this point, the malware developer
usually tweaks his malware slightly to evade the signature,
and then the cybersecurity firm tweaks its signature. This
process keeps iterating many times – at least for profitable

5https://koodous.com/

malware samples – thus leading to many malware samples
with identical feature vectors.

IV. BASIC FEATURES

As the “basic features” associated with Android APKs are
not a contribution of this paper and are derived from past work
(5; 42), we describe them very briefly here6. The basic features
fall into 3 categories.

Static features. We use Androguard to extract 120 static
features such as APK size, developer information, statistics
(on the number of activities, message receivers, providers and
functionalities,) and one-hot encoded permission features.

API Package Call Features. We also consider a recent
class of lightweight API-based package-level static features
introduced in 2019 (42). In the Android system, API pack-
ages contain one or more API classes. API packages may
interact with the operating system and provide basic com-
munication services, e.g., android.os provides basic operating
system services, message passing and internal communica-
tion between processes on the device. Figure 2 illustrates
the relationship between API packages, API classes, and
API methods. For example, API package android.os con-
tains API class android.os.Debug, android.os.Message and an-
droid.os.UserManager, etc. Similarly, each API class contains
one or more API methods. As in the case of (42), FARM has
features that capture the frequency with which an API class
in a given API package was called. We do not consider API
method call frequencies because it these frequencies are very
expensive to compute in terms of time at the method level - in
contrast, the package level computations are relatively fast.

Dynamic Features. We use Koodous’ Cuckoo and Droidbox
based analysis to extract 767 dynamic features including:
files written, files read, DNS connected, crypto usage, SMS
activities, phonecall activities, library activities, dex calls, etc.
We extract the statistics of these features (e.g., the total number
of times crypto operators are used) and also construct a one-
hot coding for categorical features.

Fig. 2: Android API Package call features illustration

FARM contains 171 API package call features — and in
all, FARM associates a 1058-dimensional feature vector with
each APK. We call this the “basic feature vector” of an APK.

6A complete description of the basic features used can be
viewed at https://docs.google.com/spreadsheets/d/1StlowS2Zm25MtLsx
xIvfdqZiyYrb2 f1TVVKVkrV1I/edit?usp=sharing

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

Training Set. Throughout this paper, we assume a training
set consisting of m APKs with feature vectors f1, . . . , fm
respectively. We assume that there are n basic features in all
and hence we can represent the feature vectors as a feature
table F = {fij}1≤i≤m,1≤j≤n where the rows correspond to
feature vectors of APKs and each column corresponds to a
feature. Of course, for each of the 12 classification problems
we study in this paper, each APK i has an associated class
yi ∈ {0, 1}. So when we look at the problem of separating
rooting malware from goodware, we set yi = 0 to mean that
sample i is goodware, while yi = 1 means it is a rooting app.
When we look at the problem of separating spyware from
goodware, we set yi = 0 to mean that sample i is goodware,
while yi = 1 means it is spyware.

V. FEATURE TRANSFORMATION TECHNIQUES

FARM does not directly use the basic features defined in
the previous section for prediction. It starts by first selecting
a subset F ⊆ Fbase of the basic features. The feature vectors
w.r.t. Fbase are then restricted to F .7

FARM transforms the restricted feature vectors associated
with each APK to a new feature space using a set of 3
irreversible transformations designed to: (i) keep accuracy of
prediction comparable to the case when the basic features are
used, and (ii) be robust against adversarial attempts to evade
the classifier. The latter property makes it more difficult for
attackers to adjust the attributes of their malware to evade
detection.

A. Landmark based Feature Transformation

Consider the US map. Every point on the US map is
characterized by a vector consisting of an apartment number
(possibly nil), street number, street name, town, state, zip code,
and possibly even more features. However, we might choose a
set of say 5 landmark points in the US. We can then map each
original feature vector to a new vector of length 5 where each
entry in the new vector is the distance from that entry to one
of the landmark points. This 5-dimensional vector is likely to
represent the original point on the map. Thus, the street address
“236 Riverside Drive Apt 5A, Manhattan, NY 10025” which
precisely identifies an apartment may now be represented by
the 5-d feature vector (20, 11, 216, 492, 117). In this example,
the distance from the above Manhattan address to the first
landmark point is 20, the distance to the second landmark
point is 11, and so forth. An adversary who merely sees this
feature vector cannot reconstruct the original address unless
he knows: (i) the 5 landmark points used and (ii) the distance
function used. We build upon this simple intuition to map the
basic feature vectors via landmark based transformations.

Figure 3 is a simple illustration of landmark based feature
transformation. Assume there is a set of rooting malware (red

7Because we do not want the adversary to easily guess what features we are
using, F is best selected in a random manner so the adversary has difficulty
in guessing what was chosen. Alternatively, it could also be selected by using
the N features that generate the best predictive results. These will also be
hard for the adversary to guess as he will need to have the same training set
in order to make a guess.

circles) and goodware (blue dots) represented in the basic
feature space (for the ease of visualization, we present them in
a 2-dimension space instead of an n-dimension space where
n is the number of basic features). With a set of landmarks
(yellow stars) selected, for each APK (red circle or blue dot),
we can compute a new feature vector for it according to its
distance to each landmark. Formally, suppose there are LM
landmarks selected from m samples in the dataset. Then for
each sample i in the dataset we get a new feature vector
fLM = (di,1, · · · , di,LM), where di,j is the distance from
sample i to landmark j. More details about generating LM
features are presented in Algorithm 1.

Fig. 3: Illustration of landmark based feature transformation.
Red and blue dots represent a type of malware (e.g. spyware)
and goodware in the feature space respectively. Yellow stars
stand for selected landmarks.

Algorithm 1: Generating LM features

1 Input: F ′ = {fij}1≤i≤m,1≤j≤n (n-dimensional basic
feature vectors for m sample APKs) , LM , landmark
selection method λ and distance measure dist;

2 Select landmarks `1, . . . , `LM from m samples by
applying landmark selection method λ(F) to F ;

3 for each sample APK i do
4 for each landmark `h do
5 di,`h = dist(i, `h);

6 fLMi = (di,`1 , · · · , di,`LM
) % landmark feature

vector
7 return FLM = {fLMi | 1 ≤ i ≤ m} (landmark based

LM -dimensional feature vectors for m sample
APKs);

In addition to the set F of basic feature vectors, Algorithm
1 needs three more parameters to generate LM features. They
are discussed in detail below.

1) The number of landmarks LM . While LM can be any
integer from 1 to m, in our experiments, we vary LM
over the set {3, 6, 9, . . . , 27, 30}.

2) A distance measure dist(i, `h) between sample i’s basic
feature vector and landmark `h’s basic feature vector can
be one of many standard measures. We use Euclidean
distance, Manhattan distance, Cosine distance, and Ham-
ming distance in our experiments though of course other
distances metrics may be used as well.

3) A method to select landmarks. We examine three ways
to do this.

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 6

• Random selection. LM landmarks are randomly
selected from the training data.

• k−means clustering based selection. The training
samples are first clustered using k−means clustering
with k = LM . One sample is then randomly
selected from each cluster as the landmark.

• Max-distance heuristic selection. Algorithm 2 shows
an algorithm for selecting landmarks that are scat-
tered across the basic feature space. This algorithm
starts by randomly choosing a training point as a
landmark and then iteratively adding training points.
In each iteration, a random sample of training points
is drawn and the point that is “furthest away” (in
terms of the sum of its distance) from the previously
selected landmarks is the next choice. The process
ends when LM landmarks have been picked.

Algorithm 2: Max-Distance Landmark Selection

1 Input: Set M with m samples, F = {fij}1≤i≤m,1≤j≤n
(n-dimensional basic feature vectors for m training
APKs), LM , and distance measure dist;

2 `0 = Randomly select one training sample from M
3 SOL = {`0}
4 while |SOL| < LM do
5 R = random samples drawn from M − SOL
6 Best = arg maxr∈R Σ`∈SOLdist(l, r)
7 SOL = SOL ∪ {Best}
8 return SOL

B. Feature Value Clustering based Feature Transformation

We now move on to our second feature transformation
which is based on the intuition that similar features may
be combined together to make a smaller but perhaps more
representative set of features. Algorithm 3 presents the method
we use to do this.

Algorithm 3: Generating FC features

1 Input: F = {fij}1≤i≤m,1≤j≤n , G: number of clusters
desired, Clu a clustering algorithm, ⊕ associative
and commutative feature combination algorithm;

2 Cluster the n basic features into G groups accordingly
by considering each feature to be a column vector in
F ;

3 for each sample APK i do
4 for each feature group g do
5 fFCig = ⊕{i.f | f ∈ g} % combine values of

APK i’s value of feature f for each f in
feature group g;

6 fFCi = (fFCi1 , · · · , fFCiG) % FC feature vector for
sample i;

7 return FFC = {fFCi | 1 ≤ i ≤ m} (feature value
clustering based G-dimensional feature vectors for m
sample APKs);

Our FC-feature generation algorithm is also pictorially de-
picted in Figure 4 works as follows. It considers each column
in the feature table (corresponding to a basic feature) to be
a column vector. We see the different feature columns shown
on the left of Figure 4. It then uses a clustering algorithm to
cluster the column vectors into G groups. Thus, each group
consists of a set of features which are similar enough to be
clustered together by the clustering algorithm. The FC-feature
transformation associates just one “merged” feature for each
group. For any given APK sample i, the value of the feature
associated with a specific group g (1 ≤ g ≤ G) of features
is obtained by first computing the set {i.f | f ∈ g} and then
combining all the feature values in this set into one by using
an associative and commutative combination operator ⊕ which
is part of the input to the algorithm. As ⊕ is associative and
commutative, the order in which it combines the members of
the set {i.f | f ∈ g} does not matter. The result is a new
G-dimensional feature vector for each APK sample i.

Fig. 4: Feature Value Clustering (FC) of features into G groups

We consider three possible definitions of ⊕ in our experi-
ments though our algorithm works with any possible associa-
tive and commutative operator. Specifically, we consider:

1) Product of the group of features as a new feature:
⊕(X) =

∏
x∈X x.

2) Average of the group of features as a new feature:
⊕(X) = (

∑
x∈X x)/|X|.

3) Distance-inverse weighted sum of the group of features
as a new feature: ⊕(X) = α

∑
x∈X x×e−d(x,µ) where µ

is the centroid of X and dist is a distance measure. Note
that we try all distance measures stated for landmark
based feature transformation.

It is important to note that the FC-transformation above
maps each APKs n-dimensional basic feature vector to a
G-dimensional space which would usually be much smaller.
The FC-transformation makes several choices. One is the
choice of the clustering algorithm to use — but in addition,
a “hidden” choice is the choice of parameters to use in the
clustering algorithm. Another example is the choice of number
of clusters. A third is the choice of ⊕. And even within ⊕,
a fourth choice is the choice of parameters within ⊕. As an
example, suppose we had 100 features to start with and the

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 7

FC-transformation used G = 3. In this case, every APK has
a new FC-feature vector with just 3 values (x1, x2, x3). An
adversary looking at this would have difficulty even knowing
which of the original features went into generating x1, which
went into generating x2 and which went into generating x3, let
alone know the answers to the additional choices mentioned
above. An adversary who reads this paper would still have
considerable difficulty in determining how all of these choices
were made in a real-world implementation of FARM.

C. Correlation Graph based Feature Transformation

We now come to our third feature transformation which also
tries to divide the n basic features into a number of groups
using the novel concept of a correlation graph (CG). We first
construct a symmetrical matrix with n rows and n columns,
where cj1,j2 , the j2th element in the j1th row, represents the
correlation of feature j1 and feature j2. We can also think
of this as a graph whose nodes are features and where an
edge (undirected) linking features j1, j2 is weighted by the
Pearson Correlation Coefficient between the two features. We
then cluster these n features would be clustered into G groups,
and we generate a new feature vector fCG for each sample
APK in the dataset.

Algorithm 4: Generating CG features

1 Input: F = {fij}1≤i≤m,1≤j≤n , Clu a clustering
algorithm, G desired number of groups, ⊕ an
associative and commutative operator;

2 Compute n× n correlation matrix according to column
vectors of F ;

3 Cluster the n basic features into G groups according to
rows of correlation matrix;

4 for each sample APK i do
5 for each feature group g do
6 fCGig = ⊕{i.f | f ∈ g};
7 fCGi = (fCGi1 , · · · , fCGiG) CG feature vector for

sample i;

8 return FCG = {fCGi | 1 ≤ i ≤ m} (correlation graph
based G-dimensional feature vectors for m sample
APKs);

As in the case of the FC-transformations, the correlation
graph transformation looks at rows of the correlation matrix
and clusters features together based on the correlations that
exist. The remainder of the algorithm generates a smaller set
of features as was the case with FC-transformations.

Important Note. The three feature transformations described
here may apply to a wide variety of classification problems.
In this paper, we show that they lead to no compromise (in
fact an improvement) over baselines for 12 Android malware
classification problems, and we additionally show that they
are resilient to certain types of adversarial attacks. We believe
that these results are likely to hold for many other domains
as well, but we do not assert this as a claim of the paper. We
further do not claim robustness against all types of adversarial
attacks, just the three mentioned in this paper.

VI. EXPERIMENTAL EVALUATION

In this section, we describe the results of the experiments
that we have designed to evaluate the performance of FARM
with different feature combinations. Our experimental eval-
uation includes four parts: (1) Distinguishing each of the 3
types Android malware (banking trojans, rooting malware,
spyware) from goodware on both the Isomorphic and No-
Isomorphic datasets; (2) Distinguishing each of the 3 types
Android malware (banking trojans, rooting malware, spyware)
from other types of malware on both the Isomorphic and
No-Isomorphic datasets; (3) Evaluating robustness of FARM
against 3 attacks. In addition, FARM discovered two new
rooting malware samples - a fact that was not previously
known to any of the 61 anti-virus engines on VirusTotal. As
(1) and (2) involve 12 experiments in all, we present a sample
in the main body of the paper. Readers may find more details
at 8 part of the paper. We used 10−fold cross-validation and
8 classifiers.9

Late Fusion. The predicted probabilities pi of the M = 8
classifiers Ci, i = 1, . . . , 8 are linearly combined by FARM as
p =

∑M
i=1 γipi, where

∑
γi = 1. We find the best value of

the γis by doing a grid search and optimizing performance on
the training set.

A. No Adversarial Attack Case

Tables III and IV summarize the results of experiments on
5 settings (described below) in the no attack case. Each of
the 5 settings is defined below. 10 LM for LM, FC, CG for
FC and CG. When more than one of LM, FC and CG are
used at the same time, their Ns are set to the same value.
“Distance” column is used to state the best distance measure
for classifiers with LM features, and “Classifier” stands for
the classifier selected with the best performance.

1) SET 1 Baseline: Basic Features Only
Due to the large number of SD features, we first compared

the performance of classifiers with all or part of SD features
using feature selection methods. We found that a certain
number of selected features yielded the best F1 score. This
is done via a standard ablation test. In ablation testing, we
first compute the performance (F1-score) with all features;
we then drop 1 feature and see which feature leads to the
biggest drop in performance — this feature, f1 is the most
important. We then repeat this process to find the second most
important feature f2 (which is the feature that leads to the
biggest drop in performance, assuming f1 is already dropped),

8https://drive.google.com/open?id=14ZQyFtsu6exZhoav4z-
1aDZXPWrnMNjv

9Classifiers used: (1) Bernoulli Naive Bayes, (2) Random Forest, (3)
Nearest Neighbors, (4) Logistic Regression, (5) Gaussian Naive Bayes, (6)
AdaBoost Classifier, (7) Gradient Boosting Decision Tree, (8) XGB Classifier
and (9) SVM.

10We use “SD” to refer to static and dynamic features, “API” to refer
to API package call features, “LM” to refer to the landmark based features
(furthermore, we use “-Rand”, “-Cluster” and “-Max-dis” to represent the
three types of landmark selection methods), “FC” corresponds to feature value
clustering based features, and “CG” is for correlation graph based features.
We use “LF(·, ..., ·)” denotes the late fusion classifier with appropriate feature
inputs. Of the various metrics reported, the most important one is the “F1-
score”, which reflects a balance of precision and recall. The column N stands
for the number of landmarks or clusters used by LM, FC and CG.

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 8

TABLE III: Multiple metrics (AUC and F1 etc.) on Android Malware detection vs. Goodware / Other-malware No-Isomorphic
dataset.

Datasets Best Settings N Distance Classifier AUC Precision Recall F1 FPR FNR

SE
T

1
B

as
el

in
e

Goodware vs. Rooting SD + API - - RF 0.9943 0.9932 0.8776 0.9312 0.0067 0.0231
Goodware vs. Banking Trojan SD + API - - RF 0.9974 0.9869 0.9306 0.9577 0.0131 0.0241
Goodware vs. Spyware SD + API - - RF 0.9949 0.9697 0.9697 0.9697 0.0303 0.0033
Other-malware vs. Rooting SD + API - - RF 0.9937 0.9817 0.8636 0.9181 0.0182 0.0261
Other-malware vs. Banking Trojan SD + API - - RF 0.9498 0.8835 0.8949 0.8887 0.1165 0.1070
Other-malware vs. Spyware SD + API - - RF 0.9922 0.9582 0.9733 0.9657 0.0418 0.0293

SE
T

2
FA

R
M

w
/

L
M Goodware vs. Rooting LF(LM-Cluster, SD, API) 12 Hamming RF 0.9983 1.0000 0.9534 0.9761 0.0000 0.0060

Goodware vs. Banking Trojan LF(LM-Cluster, SD, API) 30 Hamming GBDT 0.9952 1.0000 0.9565 0.9778 0.0000 0.0068
Goodware vs. Spyware LF(LM-Cluster, SD, API) 24 Hamming RF 0.9972 0.9903 0.9697 0.9798 0.0097 0.0320
Other-malware vs. Rooting LF(LM-Cluster, SD, API) 30 Hamming RF 0.9826 0.9241 0.9521 0.9378 0.0759 0.0534
Other-malware vs. Banking Trojan LF(LM-Cluster, SD, API) 18 Hamming GBDT 0.9614 0.9352 0.9619 0.9484 0.0648 0.0388
Other-malware vs. Spyware LF(LM-Cluster, SD, API) 21 Hamming RF 0.9974 0.9915 0.9738 0.9826 0.0085 0.0277

SE
T

3
FA

R
M

w
/

FC Goodware vs. Rooting LF(FC, SD, API) 27 - RF 0.9990 1.0000 0.9705 0.9850 0.0000 0.0030
Goodware vs. Banking Trojan LF(FC, SD, API) 30 - XGB 0.9949 1.0000 0.9444 0.9714 0.0000 0.0066
Goodware vs. Spyware LF(FC, SD, API) 21 - RF 0.9969 0.9910 0.9709 0.9808 0.0090 0.0307
Other-malware vs. Rooting LF(FC, SD, API) 21 - RF 0.9696 0.9090 0.9331 0.9208 0.0910 0.0743
Other-malware vs. Banking Trojan LF(FC, SD, API) 30 - XGB 0.9669 0.8991 0.9515 0.9245 0.1009 0.0490
Other-malware vs. Spyware LF(FC, SD, API) 24 - RF 0.9978 0.9856 0.9865 0.9860 0.0144 0.0147

SE
T

4
FA

R
M

w
/

C
G Goodware vs. Rooting LF(CG, SD, API) 21 - RF 0.9978 1.0000 0.9512 0.9750 0.0000 0.0060

Goodware vs. Banking Trojan LF(CG, SD, API) 30 - RF 0.9987 0.9904 0.9810 0.9856 0.0096 0.0066
Goodware vs. Spyware LF(CG, SD, API) 30 - RF 0.9982 0.9910 0.9831 0.9870 0.0090 0.0181
Other-malware vs. Rooting LF(CG, SD, API) 27 - RF 0.9849 0.9221 0.9595 0.9403 0.0779 0.0457
Other-malware vs. Banking Trojan LF(CG, SD, API) 21 - RF 0.9687 0.9115 0.9537 0.9321 0.0885 0.0510
Other-malware vs. Spyware LF(CG, SD, API) 30 - RF 0.9978 0.9825 0.9867 0.9846 0.0175 0.0145

SE
T

5
FA

R
M

w
/

al
l Goodware vs. Rooting LF(LM, FC, CG, SD, API) 30 Hamming RF 0.9950 1.0000 0.9750 0.9873 0.0000 0.0033

Goodware vs. Banking Trojan LF(LM, FC, CG, SD, API) 27 Euclidean RF 0.9992 1.0000 0.9905 0.9952 0.0000 0.0033
Goodware vs. Spyware LF(LM, FC, CG, SD, API) 21 Hamming RF 0.9991 1.0000 0.9906 0.9953 0.0000 0.0098
Other-malware vs. Rooting LF(LM, FC, CG, SD, API) 21 Hamming RF 0.9847 0.9545 0.9333 0.9438 0.0454 0.0147
Other-malware vs. Banking Trojan LF(LM, FC, CG, SD, API) 24 Euclidean RF 0.9689 0.9487 0.9569 0.9528 0.0513 0.0532
Other-malware vs. Spyware LF(LM, FC, CG, SD, API) 27 Hamming RF 0.9981 0.9840 0.9885 0.9862 0.0160 0.0125

TABLE IV: Multiple metrics (AUC and F1 etc.) on Android Malware detection vs. Goodware / Other-malware Isomorphic
dataset.

Datasets Best Settings N Distance Classifier AUC Precision Recall F1 FPR FNR

SE
T

1
B

as
el

in
e

Goodware vs. Rooting SD + API - - RF 0.9845 0.9908 0.9192 0.9535 0.0092 0.0278
Goodware vs. Banking Trojan SD + API - - RF 0.9967 0.9903 0.9696 0.9798 0.0097 0.0321
Goodware vs. Spyware SD + API - - RF 0.9976 0.9920 0.9734 0.9826 0.0080 0.0282
Other-malware vs. Rooting SD + API - - RF 0.9740 0.9181 0.9525 0.9349 0.0819 0.0537
Other-malware vs. Banking Trojan SD + API - - RF 0.9671 0.9279 0.9115 0.9196 0.0721 0.1000
Other-malware vs. Spyware SD + API - - RF 0.9876 0.9759 0.9819 0.9788 0.0241 0.0561

SE
T

2
FA

R
M

w
/

L
M Goodware vs. Rooting LF(LM-Cluster, SD, API) 21 Hamming RF 0.9985 1.0000 0.9579 0.9785 0.0000 0.0127

Goodware vs. Banking Trojan LF(LM-Cluster, SD, API) 27 Hamming RF 0.9970 0.9926 0.9713 0.9818 0.0074 0.0302
Goodware vs. Spyware LF(LM-Cluster, SD, API) 30 Hamming RF 0.9985 1.0000 0.9818 0.9908 0.0000 0.0067
Other-malware vs. Rooting LF(LM-Cluster, SD, API) 24 Euclidean RF 0.9859 0.9284 0.9597 0.9437 0.0716 0.0453
Other-malware vs. Banking Trojan LF(LM-Cluster, SD, API) 27 Hamming GBDT 0.9700 0.9500 0.9314 0.9406 0.0500 0.0631
Other-malware vs. Spyware LF(LM-Cluster, SD, API) 30 Hamming RF 0.9980 0.9828 0.9881 0.9854 0.0172 0.0130

SE
T

3
FA

R
M

w
/

FC Goodware vs. Rooting LF(FC, SD, API) 30 - RF 0.9978 0.9847 0.9875 0.9861 0.0153 0.0135
Goodware vs. Banking Trojan LF(FC, SD, API) 24 - RF 0.9988 1.0000 0.9813 0.9906 0.0000 0.0067
Goodware vs. Spyware LF(FC, SD, API) 21 - RF 0.9987 0.9903 0.9903 0.9903 0.0097 0.0033
Other-malware vs. Rooting LF(FC, SD, API) 30 - RF 0.9863 0.9242 0.9611 0.9422 0.0758 0.0438
Other-malware vs. Banking Trojan LF(FC, SD, API) 30 - RF 0.9673 0.9691 0.9307 0.9495 0.0309 0.0614
Other-malware vs. Spyware LF(FC, SD, API) 21 - RF 0.9981 0.9867 0.9855 0.9861 0.0133 0.0156

SE
T

4
FA

R
M

w
/

C
G Goodware vs. Rooting LF(CG, SD, API) 27 - RF 0.9967 0.9903 0.9696 0.9798 0.0097 0.0321

Goodware vs. Banking Trojan LF(CG, SD, API) 24 - RF 0.9987 0.9903 0.9903 0.9903 0.0097 0.0033
Goodware vs. Spyware LF(CG, SD, API) 30 - GBDT 0.9991 0.9970 0.9940 0.9955 0.0030 0.0069
Other-malware vs. Rooting LF(CG, SD, API) 30 - RF 0.9864 0.9255 0.9600 0.9424 0.0745 0.0449
Other-malware vs. Banking Trojan LF(CG, SD, API) 27 - RF 0.9704 0.9167 0.9429 0.9296 0.0833 0.0583
Other-malware vs. Spyware LF(CG, SD, API) 21 - RF 0.9979 0.9833 0.9862 0.9848 0.0167 0.0149

SE
T

5
FA

R
M

w
/

al
l Goodware vs. Rooting LF(LM, FC, CG, SD, API) 24 Euclidean RF 0.9991 1.0000 0.9906 0.9953 0.0000 0.0098

Goodware vs. Banking Trojan LF(LM, FC, CG, SD, API) 30 Hamming RF 0.9992 0.9970 0.9940 0.9955 0.0030 0.0068
Goodware vs. Spyware LF(LM, FC, CG, SD, API) 24 Hamming RF 0.9989 0.9969 0.9969 0.9969 0.0031 0.0034
Other-malware vs. Rooting LF(LM, FC, CG, SD, API) 21 Euclidean GBDT 0.9884 0.9457 0.9669 0.9561 0.0543 0.0365
Other-malware vs. Banking Trojan LF(LM, FC, CG, SD, API) 27 Hamming RF 0.9970 0.9903 0.9675 0.9787 0.0097 0.0343
Other-malware vs. Spyware LF(LM, FC, CG, SD, API) 30 Hamming RF 0.9985 0.9815 0.9969 0.9891 0.0185 0.0095

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 9

the third most important feature f3, and so forth. For each
fj , we compute the performance of the classifiers using the
features in Fj = F − {f1, . . . , fj}. For each Fj , we compute
the performance of our classifiers using just the features in
F−Fj , and choose the j that leads to the highest performance.
When distinguishing between rooting malware and goodware,
we found that j = 50 selected features lead to the best F1
score 0.9195. We then trained classifiers with API features
only, as well as the combination of SD and API features (row
“SD + API”) respectively. The results of combining SD and
API features (better than using SD or API features alone) in
Tables III and IV (SET1) show that the baselines achieve
F1-scores of 88.87-96.97% and 91.96-98.26% on the No-
Isomorphic and Isomorphic datasets respectively. These are
the numbers that FARM has to beat.

2) SET 2 FARM w/ LM: FARM with Landmark based
Features

Our SET 2 experiments first compared FARM with LM-
features alone while changing the landmark selection method
and varying the number of landmarks LM . Of the three
landmark selection methods, we found that the max-distance
heuristic selection (LM-Max dis) is both not competitive
and far more time-consuming. We therefore abandoned this
method in the following experiments. Next, we compared
the remaining two landmark selection methods by combining
them with SD, API and SD + API features respectively. The
results show that FARM with landmark features alone beats the
baseline in all 12 cases with F1-Scores of 93.78-98.26% and
94.06-99.08% for the No-Isomorphic and Isomorphic datasets
respectively.

3) SET 3 FARM w/ FC: FARM with Feature Value Clus-
tering based Features

The SET 3 experiments used FARM with classifiers trained
on data generated using the feature clustering based features
(w.r.t. different number of clusters G and the one with best
performance is presented in N column) and combine them
with SD, API and SD + API features respectively. Our SET
3 results show that FARM obtains F1-scores of 92.08-98.6%
and 94.22-99.06% respectively. Here again, FARM beats the
baseline in all 12 experiments and returns results comparable
to those generated by LM-features.

4) SET 4 FARM w/ CG: FARM with Correlation Graph
based Features

In SET 4 experiments, we trained our classifiers with the
correlation graph based features (w.r.t. different number of
clusters G) and combined them with SD, API, and SD +
API features respectively. Our results show that FARM with
CG features beats the baselines on all 12 cases and achieves
F1-scores of 94.03-98.56% and 92.96-99.55% on the No-
Isomorphic and Isomorphic datasets respectively.

5) SET 5 FARM w/ all: FARM Approach with All Trans-
formed Features

In SET 5 experiments, we used features from all the pro-
posed feature transformation methods and combined them with
SD, API and SD + API features respectively. The experimental
results show that FARM achieves F1-scores of 94.38-99.53%
and 95.61-99.69%, again beating out the baselines on all

12 problems. Moreover, the combination of all three feature
transformations generated the best results in all.

Statistical Significance. We tested the null hypothesis that
the best baseline for each of the 12 problems considered was
generated by the same underlying process as the best setting
of FARM (i.e. with LF (LM,FC,CG, SD,API).) The null
hypothesis was rejected in all 12 cases with p ≤3.5337e-3 in
all cases, i.e. the probability that the same underlying process
generated both the best baseline results and the best FARM
results is so low that it is almost zero. Thus, the claim that
FARM is better than the best baseline in distinguishing across
the 12 problems considered is statistically valid.

TABLE V: Statistical Results p-value of best settings of FARM
over the best baseline

Classification Problem p− value
Goodware vs. Rooting (No-Isomorphic) 1.0959e−10
Goodware vs. Rooting (Isomorphic) 1.0539e−6
Goodware vs. Banking Trojan (No-Isomorphic) 2.5891e−7
Goodware vs. Banking Trojan (Isomorphic) 1.6523e−4
Goodware vs. Spyware (No-Isomorphic) 8.1829e−6
Goodware vs. Spyware (Isomorphic) 4.4940e−4
Other-malware vs. Rooting (No-Isomorphic) 3.5337e−3
Other-malware vs. Rooting (Isomorphic) 3.3029e−7
Other-malware vs. Banking Trojan (No-Isomorphic) 7.6698e−5
Other-malware vs. Banking Trojan (Isomorphic) 1.4564e−6
Other-malware vs. Spyware (No-Isomorphic) 2.7297e−4
Other-malware vs. Spyware (Isomorphic) 3.6931e−4

TABLE VI: Statistical Results p-value of best settings of
FARM over the best baseline

Classification Problem p− value
Goodware vs. Rooting (No-Isomorphic) 1.0959e−10
Goodware vs. Rooting (Isomorphic) 1.0539e−6
Goodware vs. Banking Trojan (No-Isomorphic) 2.5891e−7
Goodware vs. Banking Trojan (Isomorphic) 1.6523e−4
Goodware vs. Spyware (No-Isomorphic) 8.1829e−6
Goodware vs. Spyware (Isomorphic) 4.4940e−4
Other-malware vs. Rooting (No-Isomorphic) 3.5337e−3
Other-malware vs. Rooting (Isomorphic) 3.3029e−7
Other-malware vs. Banking Trojan (No-Isomorphic) 7.6698e−5
Other-malware vs. Banking Trojan (Isomorphic) 1.4564e−6
Other-malware vs. Spyware (No-Isomorphic) 2.7297e−4
Other-malware vs. Spyware (Isomorphic) 3.6931e−4

B. Robustness Evaluation

The goal of the three feature transformations introduced in
this paper is to make FARM more robust in the presence of
adversarial attacks. We can be sure that malicious hackers will
adapt their malware once they realize that it has been detected
and that anti-virus engines have developed signatures to pro-
tect Android devices from the threat. Though it is impossible
to imagine all the types of evasion methods that malicious
hackers might come up with, we tested the robustness of
FARM against three kinds of attacks.

Threat Model. We assume that the adversary: (i) knows all
the 1058 basic features used by FARM, and (ii) that the adver-
sary is also familiar with the suite of 8 classifiers used in the

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 10

Fig. 5: Impact of fake API package call attack on
Android rooting malware detection: Goodware vs.
Rooting Malware (No-Isomorphic)

Fig. 6: Impact of fake API package call attack on
Android rooting malware detection: Other Malware vs.
Rooting Malware (No-Isomorphic)

Fig. 7: Impact of increased percentage of permissions
attack on Android rooting malware detection: Goodware
vs. Rooting Malware (No-Isomorphic)

Fig. 8: Impact of increased percentage of permissions
attack on Android rooting malware detection: Other
Malware vs. Rooting Malware (No-Isomorphic)

Fig. 9: Impact of reduced percentage of API package
call attack on Android rooting malware detection:
Goodware vs. Rooting Malware (No-Isomorphic)

Fig. 10: Impact of reduced percentage of API package
call attack on Android rooting malware detection: Other
Malware vs. Rooting Malware (No-Isomorphic)

paper (Bernoulli and Gaussian Naive Bayes, Random Forest,
k-Nearest Neighbor, Logistic Regression, Adaboost, Gradient
Boosted Decision Tree, XGB, and SVM). We further assume
that the attacker has read this paper and hence knows about
the three types of feature transformation used. But we do not
assume the attacker knows any of the following: (i) the specific
landmarks used, the landmark selection strategy used and/or
distance function used by the defender in the Landmark-based
Feature transformation, (ii) the number of clusters and the ⊕
feature combination algorithm used in the Feature-Value based
Clustering Transformation, and (iii) the number of groups and
the specific ⊕ operator used by the defender in the Correlation-
Graph based feature transformation. We further assume that
the attacker carries out the three kinds of attacks described

below. 11 We assume the attacker tries three kinds of attacks:

1) Fake API Package calls in which the adversary injects
irrelevant API package calls into his malware.

2) Fake permission requests in which the adversary re-
quests permissions that are irrelevant for his malware.

3) Reduced API Package calls in which the adversary tries
to artificially reduce the number of calls made to API
packages.

Note that it is more or less impossible to imagine all the types
of attacks that a savvy attacker may come up with - hence, in
this paper, we limit our claims of robustness to these types of
attacks.

11We do not claim that FARM is robust against all kinds of adversarial
attacks (e.g. obfuscated gradient attacks (30)). Indeed, such a claim would
be very hard to justify for almost any paper without making some unrealistic
assumptions.

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 11

Fig. 11: Impact of fake API package call attack on
Android Banking Trojans detection: Goodware vs.
Banking Trojans (Isomorphic)

Fig. 12: Impact of fake API package call attack on
Android Banking Trojans detection: Other Malware vs.
Banking Trojans (Isomorphic)

Fig. 13: Impact of increased percentage of permissions
attack on Android Banking Trojans detection: Goodware
vs. Banking Trojans (Isomorphic)

Fig. 14: Impact of increased percentage of permissions
attack on Android Banking Trojans detection: Other
Malware vs. Banking Trojans (Isomorphic)

Fig. 15: Impact of reduced percentage of API package
call attack on Android Banking Trojans detection:
Goodware vs. Banking Trojans (Isomorphic)

Fig. 16: Impact of reduced percentage of API package
call attack on Android Banking Trojans detection: Other
Malware vs. Banking Trojans (Isomorphic)

Fake API package call feature attack. Here, attackers try to
evade FARM by increasing the percentage of fake API package
calls made, i.e. by adding more and more fake API package
calls into the code. Table VII shows that the impact of this
attack on FARM is just 10.47-72.12% than the impact on the
baselines — on average, across the 12 classification problems,
the impact on FARM is 36%, i.e. FARM is about 3 times
as robust as the baselines across the 12 problems studied in
this paper. Figures 5 and 6 show the impact of this attack
on the best version of FARM (blue line with square markers)
compared to the best baseline (yellow line with dot markers)
as the percentage of fake calls increases in the rooting app
vs. goodware and rooting app vs. other malware classification
problems respectively.

Surprisingly, as more fake API package calls are made, it
becomes easier for classifiers to identify rooting malware. This

suggests that the malicious behavior of malware is related to
the API package calls that they make. For example, Android
Banking Trojans call API android.app.admin to hijack a
smartphone’s administrative features at the system level, while
it is not commonly called in Android Goodware. Thus, when
we simulate the attacker’s behavior and increasing the Fake
Call Percentage in malware, the performance of the classifier
using both our best setting and baseline improves because
the fake calls may involve the malware calls many more API
calls than a piece of goodware would ordinarily make. FARM
always achieve better F1 performance, especially when the
attacker injects only a small percentage of fake API package
calls (which is the best strategy for him as this is when both
FARM and the baselines’ predictive accuracy is lowest in this
situation).

Fake permission attack. Second, we assume that attackers

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 12

Fig. 17: Impact of fake API package call attack on
Android Spyware detection: Goodware vs.
Spyware (No-Isomorphic)

Fig. 18: Impact of fake API package call attack on
Android Spyware detection: Other Malware vs.
Spyware (No-Isomorphic)

Fig. 19: Impact of increased percentage of permissions
attack on Android Spyware detection: Goodware
vs. Spyware (No-Isomorphic)

Fig. 20: Impact of increased percentage of permissions
attack on Android Spyware detection: Other
Malware vs. Spyware (No-Isomorphic)

Fig. 21: Impact of reduced percentage of API package
call attack on Android Spyware detection:
Goodware vs. Spyware (No-Isomorphic)

Fig. 22: Impact of reduced percentage of API package
call attack on Android Spyware detection: Other
Malware vs. Spyware (No-Isomorphic)

try to evade malware detection by increasing the number of
permissions they seek. Table VIII shows that on average, the
impact of this attack on FARMis 10.25-74.42% of the impact
on the best baseline, with the average impact on FARM being
35.74%. Thus, as in the case of the first attack, FARM is about
3 times as robust to this attack than the best baseline.

The “fake permission” percentage in Figures 7 and 8 refer
to the percentage of requested permissions that are fake. The
figures respectively show the results of distinguishing between
rooting malware and goodware on the one hand, and other
malware on the other hand. We see that as more permissions
are required, both FARM and the baselines do a better job in
detecting rooting malware. But again, the best case scenario
for the attacker is when the percentage of fake (unused)
permissions is below about 8% and in this case, FARM beats
the baselines. FARM performs better than the best baseline be-

cause malware also achieves its malicious function by calling
system permissions in the manifest file. For example, Android
Spyware uses system permissions permission:RECEIVE SMS
and permission:READ SMS to steal messages from the smart-
phone while common Android Goodware does not. Also, both
common Android Goodware and Android Spyware do not call
the permission android.permission.SET TIME, which allows
the application to set the system time. When the attacker
behavior increases the Unused Permissions Percentage, it the
classifiers’ job becomes easier to distinguish the adapted mal-
ware if it calls the permission android.permission.SET TIME.
The performance of both classifiers increases at the same time.

Reduced API feature attack. Third, we assume that attackers
are more strategic and capable — we allow them to selectively
drop some API package calls by 1 when the original value is at
least 2. Table IX shows that the impact of this attack on FARM

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 13

TABLE VII: Average impact score a of FARM over the best
baseline on increased fake API package call attack

Classification Problem a
Goodware vs. Rooting (No-Isomorphic) 0.1846
Goodware vs. Rooting (Isomorphic) 0.6824
Goodware vs. Banking Trojan (No-Isomorphic) 0.1047
Goodware vs. Banking Trojan (Isomorphic) 0.7212
Goodware vs. Spyware (No-Isomorphic) 0.1138
Goodware vs. Spyware (Isomorphic) 0.4505
Other-malware vs. Rooting (No-Isomorphic) 0.2310
Other-malware vs. Rooting (Isomorphic) 0.2989
Other-malware vs. Banking Trojan (No-Isomorphic) 0.1728
Other-malware vs. Banking Trojan (Isomorphic) 0.5348
Other-malware vs. Spyware (No-Isomorphic) 0.1047
Other-malware vs. Spyware (Isomorphic) 0.7212

TABLE VIII: Average impact score a of FARM over the best
baseline on increased percentage of permissions attack

Classification Problem a
Goodware vs. Rooting (No-Isomorphic) 0.1952
Goodware vs. Rooting (Isomorphic) 0.6063
Goodware vs. Banking Trojan (No-Isomorphic) 0.1025
Goodware vs. Banking Trojan (Isomorphic) 0.7442
Goodware vs. Spyware (No-Isomorphic) 0.1376
Goodware vs. Spyware (Isomorphic) 0.4623
Other-malware vs. Rooting (No-Isomorphic) 0.2286
Other-malware vs. Rooting (Isomorphic) 0.2617
Other-malware vs. Banking Trojan (No-Isomorphic) 0.1791
Other-malware vs. Banking Trojan (Isomorphic) 0.5250
Other-malware vs. Spyware (No-Isomorphic) 0.1025
Other-malware vs. Spyware (Isomorphic) 0.7442

ranges from -3.64-6.14, suggesting a wide variation. On 11 of
12 cases, FARM outperforms the best baseline, but in one
case (Other malware vs. Rooting malware), the best baseline
outperforms FARM. Again, on average, FARM performs very
well, with the accuracy of FARM often improving under this
attack. This is because the modified malware achieves its
malicious purpose by calling specific API calls and because
the number of called APIs can be decreased but they cannot
be fully removed. The results on Rooting malware detection
are shown in Figures 9 and 10. Unlike the results from
the previous two kinds of attack, we see that the reduced

TABLE IX: Average impact score a of FARM over the best
baseline on reduced percentage of API package call attack

Classification Problem a
Goodware vs. Rooting (No-Isomorphic) -0.7319
Goodware vs. Rooting (Isomorphic) -3.2924
Goodware vs. Banking Trojan (No-Isomorphic) -1.1666
Goodware vs. Banking Trojan (Isomorphic) 0.6750
Goodware vs. Spyware (No-Isomorphic) -3.6451
Goodware vs. Spyware (Isomorphic) -0.9673
Other-malware vs. Rooting (No-Isomorphic) 0.2623
Other-malware vs. Rooting (Isomorphic) 6.1428
Other-malware vs. Banking Trojan (No-Isomorphic) -0.0247
Other-malware vs. Banking Trojan (Isomorphic) -0.0212
Other-malware vs. Spyware (No-Isomorphic) -1.1666
Other-malware vs. Spyware (Isomorphic) 0.6750

API feature attack is harder for both FARM and traditional
classifiers to adapt to. However, the situation is worse for the
baseline classifiers. When distinguishing between rooting mal-
ware and goodware, the F1 performance goes down slightly
as the number of API package calls is reduced. The reason
might be that rooting malware gets less malicious and more
similar to goodware in this case. However, the F1 score goes
up when distinguishing rooting malware from other malware.
The reason might be that as rooting malware is getting more
similar to goodware, it ends up being more distinct from
other malware. Table VII, Table VIII and Table IX show
3 kinds of applied attack during the robustness test, and
impact score is calculated according to the average of 0% to
20% increased or decreased number of APIs or permissions.
The performance under attack is always increasing because
our classifiers distinguish Goodware vs. Malware on API or
Permission features. When we simulate the attack, we increase
the number of unused APIs or permissions in malware, and so
can detect the malware easier because some API or permission
features may not be used by both goodware or malware, but
now more malware calls the common unused feature, leading
to better classification results. Again, FARM performs better
than the baseline. When we decrease 1 for some of called APIs
(frequency ≥ 2 to keep its malicious function) in malware,
no obvious change on the performance because the feature
space doesn’t change too much compared to the previous two
attacks. At the same time, FARM still has better performance.

C. Discovery of New Rooting Malware

FARM has successfully labeled two malware samples on
VirusTotal12 as rooting malware before this was observed by
any of the 61 anti-virus engines on VirusTotal. Moreover, on
a phone running Android version 4.4.4, these are labeled as
goodware as Figure 24 shows. We reported these two samples
to Google’s Android Security Team who have confirmed the
findings.

The first malware has the (common) name “App Market”13

and disguises itself as a normal third party application market
APK. When the user installs this APK, it asks for 14 permis-
sions in total, including some dangerous permissions such as
WRITE CALENDAR and WRITE EXTERNAL STORAGE14.
After installation, a number of malicious behaviors end up
occurring: it keeps asking for new permissions, automatically
downloads new apps, and bypasses the lock screen.

The second malware with the name “MoboMarket”15

is actually impersonating a benign application also called
MoboMarket and asks for dangerous permissions such as
WRITE EXTERNAL STORAGE. After digging into its ob-
fuscated java source code, we found some code snippets
which are directly related to rooting behavior as seen in
Figure 24. We found that its source code includes a public
class RequestRootActivity.java that asks for root privilege

12https://www.virustotal.com
13SHA256: 1ff2c23d3e6558ad4394ac3eb339c1bc4952eecfa45a35e3eb0e20

6db8568925
14https://developer.android.com/guide/topics/permissions/overview
15SHA256: 886238c0d4894bd346cd7c3c5585d9c48b50d1ba73c90284f33ee

d1c0a5336df

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 14

Fig. 23: Two newly detected rooting malware evade default
Android Security check.

on the infected device. We also discovered out that this
“MoboMarket” is actually a malware variant of the authentic
“MoboMarket” application, which has rooting functionality.
Again, the Google Android Security Team confirms that this
newly labeled rooting malware impersonates a popular rooting
APK called KingRoot.

Fig. 24: Malicious source code snippet from malware Mobo-
Market.

VII. LIMITATIONS OF THE FARM APPROACH

The FARM approach has three limitations that we discuss
briefly below.

1) Though FARM’s feature transformations can be applied
to any set of “base” features, it is important that this set
of base features be selected judiciously and be capable
of making good predictions. In this paper, we chose
base features that have been shown in the literature to
be useful for classifying Android apps into benign vs.
malicious samples.

2) As in much of machine learning research both inside
and outside cybersecurity, there is a critical need to find
the values of the hyperparameter settings that yield the
best prediction results. We have adopted a grid search

based method to address this problem in this paper, but
an analytic solution could be helpful for future work.

3) We have shown that FARM is robust against three
types of attack. However, there may be other kinds
of attacks (e.g. obfuscated gradient based attacks (30)
or attacks that do not depend on API function calls
that we have not tested against). While we do not
expect to find classifiers that are robust against every
type of attack, identifying a larger space of attacks and
showing how FARM either is robust to those attacks
or could be modified to withstand those attacks is an
important future research topic. While FARM’s feature
transformations are defined even if completely different
types of features are used, their effectiveness with new
or very different features remains to be explored.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we make the following contributions: (1) first,
we propose three new feature transformation techniques that
can be used to generate feature vectors that are very hard to
reverse engineer, (ii) we propose the FARM techniques that
use these transforms to predict whether a given Android APK
is a form of malware or not — we consider three forms
of malware, namely spyware, banking trojans and rooting
malware. (iii) we propose three new kinds of attacks that
a malicious hacker might take to evade standard classifiers
and show that FARM is quite robust against these kinds of
attacks. In particular, when there are no attacks, FARM slightly
outperforms various baselines and when these three attacks
are used, FARM is on average about 3 times more robust
than the baselines. Finally, our work is not purely theoretical:
FARM has discovered two Android APKs to be rooting apps
before any of the 61 anti-viruses on VirusTotal came to the
same conclusion. These samples were reported to Google’s
Android Security Team who have confirmed the labeling of
these samples as rooting apps.

REFERENCES

[1] I. Lunden, “6.1B smartphone users globally by
2020, overtaking basic fixed phone subscriptions,”
http://techcrunch.com/2015/06/02/6-1b-smartphone-
users-globally-by-2020-overtaking-basic-fixed-phone-
subscriptions, 2015, accessed: 2019-05-21.

[2] “Number of the week: at least 34% of android malware
is stealing your data,” https://www.kaspersky.com/about/
press-releases/2011 number-of-the-week-at-least-34-of-
android-malware-is-stealing-your-data, 2011, accessed:
2019-05-20.

[3] “2011 mobile threats report,” https://www.juniper.net/
us/en/local/pdf/additional-resources/jnpr-2011-mobile-
threats-report.pdf, 2012, accessed: 2019-05-20.

[4] “Android security & privacy 2018 year in review,”
https://source.android.com/security/reports/Google
Android Security 2018 Report Final.pdf, 2019,
accessed: 2019-05-20.

[5] T. Chakraborty, F. Pierazzi, and V. Subrahmanian, “Ec2:
ensemble clustering and classification for predicting an-

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 15

droid malware families,” IEEE Transactions on Depend-
able and Secure Computing, 2017.

[6] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Up-
grading your android, elevating my malware: Privilege
escalation through mobile os updating,” in 2014 IEEE
Symposium on Security and Privacy. IEEE, 2014, pp.
393–408.

[7] H. Zhang, D. She, and Z. Qian, “Android root and its
providers: A double-edged sword,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1093–1104.

[8] I. Gasparis, Z. Qian, C. Song, and S. V. Krishna-
murthy, “Detecting android root exploits by learning
from root providers,” in 26th {USENIX} Security Sym-
posium ({USENIX} Security 17), 2017, pp. 1129–1144.

[9] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Sig-
nificant permission identification for machine-learning-
based android malware detection,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 7, pp. 3216–3225,
2018.

[10] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and
K. Rieck, “DREBIN: Effective and Explainable Detec-
tion of Android Malware in Your Pocket.” in NDSS,
2014.

[11] L. Cen, C. S. Gates, L. Si, and N. Li, “A probabilistic
discriminative model for android malware detection with
decompiled source code,” IEEE Transactions on Depend-
able and Secure Computing, vol. 12, no. 4, pp. 400–412,
2015.

[12] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristo-
faro, G. Ross, and G. Stringhini, “MaMaDroid: Detecting
android malware by building markov chains of behavioral
models,” NDSS, 2017.

[13] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli,
“Madam: Effective and efficient behavior-based android
malware detection and prevention,” IEEE Transactions
on Dependable and Secure Computing, vol. 15, no. 1,
pp. 83–97, 2018.

[14] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yer-
ima, P. Miller, S. Sezer, Y. Safaei, E. Trickel, Z. Zhao,
A. Doupe et al., “Deep android malware detection,” in
Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy. ACM, 2017, pp.
301–308.

[15] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Hin-
droid: An intelligent android malware detection system
based on structured heterogeneous information network,”
in Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.
ACM, 2017, pp. 1507–1515.

[16] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining
API-level features for robust malware detection in an-
droid,” in SecureComm. Springer, 2013.

[17] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crow-
droid: behavior-based malware detection system for an-
droid,” in SPSM. ACM, 2011.

[18] L. K. Yan and H. Yin, “DroidScope: Seamlessly recon-
structing the OS and Dalvik semantic views for dynamic

android malware analysis,” in USENIX Security, 2012.
[19] M. Lindorfer, M. Neugschwandtner, and C. Platzer,

“Marvin: Efficient and comprehensive mobile app clas-
sification through static and dynamic analysis,” in IEEE
COMPSAC, 2015.

[20] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and
X. Zhang, “Exploring permission-induced risk in android
applications for malicious application detection,” IEEE
Transactions on Information Forensics and Security,
vol. 9, no. 11, pp. 1869–1882, 2014.

[21] Z. Zhu and T. Dumitraş, “Featuresmith: Automatically
engineering features for malware detection by mining
the security literature,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security. ACM, 2016, pp. 767–778.

[22] K. Tian, D. D. Yao, B. G. Ryder, G. Tan, and G. Peng,
“Detection of repackaged android malware with code-
heterogeneity features,” IEEE Transactions on Depend-
able and Secure Computing, 2017.

[23] Y. Li, J. Jang, X. Hu, and X. Ou, “Android malware
clustering through malicious payload mining,” in Inter-
national Symposium on Research in Attacks, Intrusions,
and Defenses. Springer, 2017, pp. 192–214.

[24] M. Zheng, M. Sun, and J. C. Lui, “Droidtrace: A ptrace
based android dynamic analysis system with forward exe-
cution capability,” in 2014 international wireless commu-
nications and mobile computing conference (IWCMC).
IEEE, 2014, pp. 128–133.

[25] L. Onwuzurike, M. Almeida, E. Mariconti, J. Black-
burn, G. Stringhini, and E. De Cristofaro, “A family of
droids-android malware detection via behavioral model-
ing: Static vs dynamic analysis,” in 2018 16th Annual
Conference on Privacy, Security and Trust (PST). IEEE,
2018, pp. 1–10.

[26] M. Almeida, M. Bilal, A. Finamore, I. Leontiadis,
Y. Grunenberger, M. Varvello, and J. Blackburn, “Chimp:
Crowdsourcing human inputs for mobile phones,” in
Proceedings of the 2018 World Wide Web Conference.
International World Wide Web Conferences Steering
Committee, 2018, pp. 45–54.

[27] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R.
Sadeghi, “Xmandroid: A new android evolution to miti-
gate privilege escalation attacks,” Technische Universität
Darmstadt, Technical Report TR-2011-04, 2011.

[28] R. Unuchek, “Rooting your android: Advantages,
disadvantages, and snags,” June 21 2017. [On-
line]. Available: \url{https://www.kaspersky.com/blog/
android-root-faq/17135/}

[29] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Cop-
perdroid: Automatic reconstruction of android malware
behaviors.” in Ndss, 2015.

[30] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated
gradients give a false sense of security: Circumvent-
ing defenses to adversarial examples,” arXiv preprint
arXiv:1802.00420, 2018.

[31] W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu,
“Shadow attacks: automatically evading system-call-
behavior based malware detection,” Journal in Computer

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

1556-6013 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.2975932, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 16

Virology, vol. 8, no. 1-2, pp. 1–13, 2012.
[32] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon:

evaluating android anti-malware against transformation
attacks,” in Proceedings of the 8th ACM SIGSAC sym-
posium on Information, computer and communications
security, 2013, pp. 329–334.

[33] W. Hu and Y. Tan, “Generating adversarial malware
examples for black-box attacks based on gan,” arXiv
preprint arXiv:1702.05983, 2017.

[34] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and
P. McDaniel, “Adversarial examples for malware detec-
tion,” in European Symposium on Research in Computer
Security. Springer, 2017, pp. 62–79.

[35] M. Pechenizkiy, A. Tsymbal, and S. Puuronen, “Pca-
based feature transformation for classification: issues in
medical diagnostics,” in Proceedings. 17th IEEE Sympo-
sium on Computer-Based Medical Systems. IEEE, 2004,
pp. 535–540.

[36] G. Wu and E. Y. Chang, “Adaptive feature-space con-
formal transformation for imbalanced-data learning,” in
Proceedings of the 20th International Conference on
Machine Learning (ICML-03), 2003, pp. 816–823.

[37] U. Khurana, D. Turaga, H. Samulowitz, and S. Parthas-
rathy, “Cognito: Automated feature engineering for su-
pervised learning,” in 2016 IEEE 16th International Con-
ference on Data Mining Workshops (ICDMW). IEEE,
2016, pp. 1304–1307.

[38] I. Amaya, J. C. Ortiz-Bayliss, A. E. Gutiérrez-Rodrı́guez,
H. Terashima-Marı́n, and C. A. C. Coello, “Improving
hyper-heuristic performance through feature transforma-
tion,” in 2017 IEEE Congress on Evolutionary Compu-
tation (CEC). IEEE, 2017, pp. 2614–2621.

[39] X. Huang, L. Wu, E. Chen, H. Zhu, Q. Liu, Y. Wang,
and B. T. I. Center, “Incremental matrix factorization:
A linear feature transformation perspective.” in IJCAI,
2017, pp. 1901–1908.

[40] X. Wu, W. Zuo, L. Lin, W. Jia, and D. Zhang, “F-
svm: combination of feature transformation and svm
learning via convex relaxation,” IEEE transactions on
neural networks and learning systems, no. 99, pp. 1–15,
2018.

[41] Z. Chen, K. Wang, X. Wang, P. Peng, E. Izquierdo,
and L. Lin, “Deep co-space: Sample mining across fea-
ture transformation for semi-supervised learning,” IEEE
Transactions on Circuits and Systems for Video Technol-
ogy, vol. 28, no. 10, pp. 2667–2678, 2018.

[42] C. Bai, Q. Han, G. Mezzour, F. Pierazzi, and V. Sub-
rahmanian, “Dbank: Predictive behavioral analysis of
recent android banking trojans,” IEEE Transactions on
Dependable and Secure Computing, 2019.

Qian Han is a fourth-year Ph.D. student at Dart-
mouth College advised by Prof. V.S. Subrahmanian.
He received a BEng in department of Electronic En-
gineering from Tsinghua University in 2016. During
2015, he spent 3 months as a visiting research as-
sistant at Nanyang Technological University, Singa-
pore. His research interests lie in cybersecurity, data-
mining, game theory, and social network analysis.

V.S. Subrahmanian is the Dartmouth College Dis-
tinguished Professor in Cybersecurity, Technology,
and Society and Director of the Institute for Security,
Technology, and Society at Dartmouth. He previ-
ously served as a Professor of Computer Science at
the University of Maryland from 1989-2017 where
he created and headed both the Lab for Computa-
tional Cultural Dynamics and the Center for Digital
International Government. He also served for 6+
years as Director of the University of Maryland’s
Institute for Advanced Computer Studies. Prof. Sub-

rahmanian is an expert on big data analytics including methods to analyze
text/geospatial/relational/social network data, learn behavioral models from
the data, forecast actions, and influence behaviors with applications to
cybersecurity and counterterrorism. He has written five books, edited ten, and
published over 300 refereed articles. He is a Fellow of the American Associa-
tion for the Advancement of Science and the Association for the Advancement
of Artificial Intelligence and received numerous other honors and awards. His
work has been featured in numerous outlets such as the Baltimore Sun, the
Economist, Science, Nature, the Washington Post, American Public Media.
He serves on the editorial boards of numerous journals including Science, the
Board of Directors of the Development Gateway Foundation (set up by the
World Bank), SentiMetrix, Inc., and on the Research Advisory Board of Tata
Consultancy Services. He previously served on DARPA’s Executive Advisory
Council on Advanced Logistics and as an ad-hoc member of the US Air Force
Science Advisory Board.

Homepage: http://home.cs.dartmouth.edu/ vs/

Yanhai Xiong is a Postdoc working in Dartmouth
College since July, 2018. She received her PhD
degree in Computer Science and Engineering from
Nanyang Technological University, Singapore and
the Bachelor degree in Automation from University
of Science and Technological University of China.
Her research interests lie in optimization, machine
learning, cybersecurity and smart cities.

Authorized licensed use limited to: Dartmouth College. Downloaded on March 26,2020 at 17:51:14 UTC from IEEE Xplore. Restrictions apply.

