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Abstract—Today, countries are engaged in the cyber-arms race.
With over 16 K new hardware/software vulnerabilities reported
in 2018 alone, an important question confronts senior government
decision makers when their cyber-warfare units discover a new
vulnerability. Should they disclose the vulnerability to the vendor
who produced the vulnerable product? Or should they “stockpile”
the vulnerability, holding it for developing exploits (i.e., cyber-
weapons) that can be targeted at an adversary? Choosing the first
option may be important when the affected company is a corpo-
ration in the nation state that discovers the vulnerability and/or if
that nation state would have a big exposure to that vulnerability.
Choosing the second option has obvious advantages to the discover-
ing nation’s defense. We formulate the cyber-competition between
countries as a repeated cyber-warfare game (RCWG), where two
countries (players) compete over a series of vulnerabilities by decid-
ing, at the time of vulnerability discovery, 1) whether to exploit or
disclose it and 2) how long to exploit it if they decide to exploit. We
define the equilibrium state of the RCWG as a pure strategy Nash
equilibrium, and propose a learning-while-competing framework
to compute the pure strategy Nash equilibrium of the formulated
RCWG. Although testing our results with real data in the murky
world of cyber-warfare is challenging, we were able to obtain real
statistics from other sources and demonstrate the effectiveness of
our proposed algorithm through a set of simulation results under
different scenarios using these third-party statistics. We also report
on our DiscX system that can help support government decision
makers in their decision whether to disclose or exploit a vulnera-
bility that they find.

Index Terms—Cyber-security, decision support system, game
theory, national defense and security.

I. INTRODUCTION

DURING the last few years, cyberattacks have become a
powerful weapon on the modern battlefield. For instance,

the Stuxnet worm, which was discovered in 2010, is reported by
New York Times’ national security correspondent David [19] to
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have been jointly developed by the U.S. and Israel in order to
disrupt Iran’s nuclear program.

As the space of connected devices increases, more and more
vulnerabilities will be discovered in devices whose manufac-
turers had never considered cyber-security to be an issue. In
fact, according to [18], the number of new software and hard-
ware vulnerabilities disclosed every year have been steadily
increasing over the past decade. In total, 16 555 vulnerabilities
were disclosed in the year 2018—a number that is almost triple
than that from 2008. Once a vulnerability is discovered by a
government of a country (e.g., in the USA, the National Security
Agency, and the U.S. Cyber Command can be viewed as the
leaders in the hunt for cyber-vulnerabilities; in the U.K., it is
government communications headquarters (GCHQ)), there are
two major options. One option is to disclose the vulnerability.
This option is significant when one of the two cases is true: 1)
the manufacturer of the product containing the vulnerability is
based in the same country—in this case, the government has at
least some responsibility to ensure their well-being from attacks
that might use that vulnerability and damage the manufacturer’s
credibility, and/or 2) the product in which the vulnerability
exists is widely deployed in the same country in which case
the government has some obligation to protect those entities
using the product from an adversary who might seek to use the
vulnerability. The second option is to hold the discovery of the
vulnerability secret and to develop an exploit, which may be
used to an adversary country.

The U.S. Government’s Vulnerability Equities Process
(VEP)1 is a pioneering and rare public statement on the “dis-
close or exploit” decision-making process: should a government
disclose the zero-day vulnerabilities they discover in software
and hardware products or should they exploit them for offensive
cyber-operations? The European union (EU) has also taken
action on this with two nations, Latvia and the Netherlands,
at the forefront.2 The UK’s GCHQ agency has also released a
report detailing their VEP process.3

The U.S. Government’s VEP program, though not unexpect-
edly secretive, appears to be based on an interagency task force
called the Equities Review Board (ERB) that meets monthly in

1Vulnerabilities Equities Policy and Process for the United States Govern-
ment, November 15, 2017. https://www.whitehouse.gov/sites/whitehouse.gov/
files/images/External%20-%20Unclassified%20VEP%20Charter%20FINAL.
PDF

2https://www.hackerone.com/blog/Software-Vulnerability-Disclosure-
Europe-Summary-and-Key-Highlights-European-Parliament-CEPS

3https://www.gchq.gov.uk/information/equities-process
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order to assess the pros and cons of disclosing each vulnerability.
It is not clear what, if any, advanced scientific methods are used
to support this process. The goal of this article is to develop the
mathematical and computational foundations, together with our
developed prototype system called DiscX to help support and
inform this process with advanced artificial intelligence (AI)
techniques.

The answer to the “disclose or exploit” question depends upon
many factors some of which can be given as follows.

1) How much would disclosure help a nation’s corporations
and/or protect users of the affected technology in that
nation?

2) What is the probability that either an adversary or a third
party, e.g., independent hacker or cyber-security company,
will discover and disclose the vulnerability, making it
available for exploitation by the nation’s adversaries?

3) What is the probability that an adversary will exploit the
vulnerability and potentially affect sales and/or increase
the liability of the nation’s companies?

4) In the event that a decision to exploit the vulnerability is
made, should there also be a plan and/or process to disclose
it in the future and if so, when?

We propose a Repeated Cyber-Warfare Game (RCWG)-based
formulation of the problem of optimal decision making for a se-
ries of vulnerabilities that emerge over time. Our RCWG frame-
work is further decomposed into multiple one-stage games.
Each one-stage game corresponds to one vulnerability, where
the players are the two entities (i.e., countries), the strategy is a
two-dimensional variable, which specifies 1) whether or not to
exploit the vulnerability and 2) how long should the exploit be
used if the player decides to exploit. We, then, derive explicit
payoff functions for the players. We, then, define a pure strategy
Nash equilibrium to describe the status of the one-stage game
in which no player is able to gain any additional payoff by
unilaterally changing his/her strategy.

There are two challenges in solving the RCWG. First, we
show that the formulated RCWG is essentially an incomplete
information game, where the probability distributions of several
parameters in the two players’ payoff functions are unknown.
Second, even if the parameter distributions are known to the
players, we show that the computation of best response for one
player is a stochastic optimization problem.

We make the following contributions toward solving the
formulated RCWG. First, assuming that the parameter distri-
butions are known to the two players, we propose an alternating
stochastic optimization approach to compute the pure strategy
Nash equilibrium for each stage game associated with each vul-
nerability. Second, we propose a learning framework to update
the belief of the parameter distribution for the two players.

We conduct extensive experimental evaluations on both a
simulated environment. The empirical results show that

1) our proposed algorithm always converges with an average
of around 220 iterations, and successfully computes an
equilibrium strategy for a new vulnerability within 20 s;

2) a player who uses our framework to make a strategic
decision about disclosing a vulnerability versus exploiting
it will gain a significantly higher payoff compared with

Fig. 1. Lifecycle of a software vulnerability before disclosure.

baseline strategies, which either always disclose or exploit
a new vulnerability.

Finally, we have developed a prototype system called DiscX
at Dartmouth College, Hanover, New Hampshire, USA, that
supports making the “disclose or exploit” decision based on hard
science, but using the expertise and data that the agencies making
such decisions might have. DiscX allows the organization in
question (e.g., such as the U.S. Government’s ERB) to make
this decision by providing the DiscX system with inputs based
on their knowledge of a specific scenario; DiscX, then, plays out
the RCWG proposed in this article and makes a recommendation
about the following: 1) should a given vulnerability be exploited?
2) if yes, for how long?

II. LIFECYCLE OF VULNERABILITIES BEFORE DISCLOSURE

Before we present the cyber-warfare game model, we first
briefly introduce some background information pertaining to
the lifecycle of vulnerabilities. Throughout this section, we only
consider the viewpoint of the organization that is interested in
discovering and exploiting/disclosing the vulnerability. Fig. 1
depicts the lifecycle of a vulnerability, which usually involves
the following stages.

1) Creation time Tcrt of a vulnerability: We define the cre-
ation time Tcrt of a vulnerability as the release time of
either the hardware/software in which the vulnerability
exists. In most such cases, the vulnerability is due to
an unknown (to the vendor) security flaw in the prod-
uct, although there have been accusations (notably those
leveled by the U.S. Government against Huawei4) that
certain products are sometimes knowingly released with
intentionally placed zero day vulnerabilities that are un-
known to the buyer. By default, we set Tcrt = 0 for each
vulnerability.

2) Discovery time Tdisco of a vulnerability: After the creation
of a vulnerability, a certain amount of time may elapse
before white/black hat hackers recognize the existence
of the vulnerability. Note that discovery is distinct from
disclosure because the discoverer of the vulnerability may
or may not disclose it to the public.

3) Time Tavail when exploit code that leverages the vulnera-
bility is available: Upon discovery of a vulnerability, ex-
ploit code might be developed either by white hat hackers
for research purposes, or by black hat hackers with the
intention of compromising computer systems. The former
is called a “proof-of-concept” (PoC) exploit, while the
latter is called a “real-world” exploit. In this article, we
do not differentiate between these two types of exploits as

4https://www.bbc.com/news/world-us-canada-47046264

https://www.bbc.com/news/world-us-canada-47046264
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it is straightforward to turn PoC exploits into real-world
exploits, once the exploit code is ready. Correspondingly,
Tdev = Tavail − Tdisco is the time required to develop the
exploit code.

4) Exploit start time Texploit: After the exploit code is avail-
able, the exploit code owner can start exploiting the vulner-
ability. In this article, we consider attacks that use only one
exploit at time (which is the case for most cyberattacks)
and, hence, there is no payoff of waiting for a certain period
of time. As a result, it is a dominant strategy to exploit a
vulnerability as soon as the code is available, and, thus,
we assume in this article that Texploit = Tavail, i.e., the
exploit start time is equal to the time when exploit code is
available.5

5) Vulnerability disclosure time Tdisclose: The time of dis-
closure is defined as the first time a vulnerability is made
publicly available, either via security forums like Secu-
rity Focus,6 or organizations like the Mitre Corporation,7

which is one of several authorities that assign common
vulnerability and exposure (CVE) numbers to disclosed
vulnerabilities. By vulnerability disclosure, we mean that
information about the vulnerability is made available to the
public and to the affected software vendors in particular
so that they may produce patches for the vulnerabilities.
Since it is a dominant strategy for any entity to exploit the
vulnerability until it decides to disclose it, we also assume
that texp = Tdisclose − Texploit, i.e., the time length of
exploit is equal to the time of disclosure minus the time
of exploit start time (or equivalently, the exploit code
availability time).

6) After disclosure: Once a vulnerability is made public,
cyber-security firms can develop signatures, the affected
software vendor(s) can develop the necessary patches, and
software owners can purchase and install these patches for
their vulnerable software. We omit the detailed introduc-
tion of the processes after vulnerability disclosure as they
are out of scope of this article.

III. RCWG MODEL

Game theory is one of the most widely adopted tools to model
strategic behaviors of multiple entities, which are involved in a
competitive situation. In this article, we formulate the cyber-
warfare among two parties as an RCWG. We achieve this by
first considering a one-stage game defined on a specific vul-
nerability, and then extending the one-stage game to a repeated
game setting where the two players compete over a series of
vulnerabilities. With the RCWG model, our goal is to compute,
given the cyber-warfare status of two countries, what would be
the equilibrium strategies in terms of 1) whether to disclose or

5There are cases where it may make sense to wait before using an exploit.
For instance, a government may use multiple exploits in a coordinated at-
tack (e.g., in the case of Stuxnet, four zero day exploits were used accord-
ing to https://www.zdnet.com/article/stuxnet-attackers-used-4-windows-zero-
day-exploits/). We defer such complex attacks to future work.

6https://www.securityfocus.com/
7https://www.mitre.org/

exploit a vulnerability at the discovery, and 2) how long would
the exploit last if the decision is to exploit the vulnerability.

A. One-Stage Game

For a given arbitrary but fixed vulnerability, we define a two-
player one-stage cyber-warfare game as G = {I,a,u}, where
I = {1, 2} is the set of two players, a = {a1, a2} is the joint
strategy of the two players, and u = {u1(a), u2(a)} is the joint
payoff function of the two players. In the following, we introduce
the different elements in the one-stage cyber-warfare game in
detail.

1) Players and Strategies: Given a vulnerability, the two
players I = {1, 2} are two entities (e.g., two countries) who
are competing with each other in cyber-warfare. We define the
pure strategy8 of player i ∈ I as a pair ai = (bi, tiexp), which
consists of 1) a binary variable bi ∈ {0, 1} indicating whether
to exploit the vulnerability or not and 2) the length of time tiexp
for which to exploit the vulnerability if bi = 1 (i.e., if player
i decides to exploit the vulnerability). Thus, there is a payoff
function associated with each player.

2) Payoff Function: The payoff of the players is affected by
several factors, including

a) Development cost: If a player i decides to exploit the
discovered vulnerability, there is a cost cidev of developing
the exploit code. For example, Kaspersky Lab’s Roel
Schouwenberg estimated that it took a team of ten people
at least two to three years to create Stuxnet in its final
form [16].

b) Exploit payoff: After successful development of exploit
code, a player i is able to exploit the vulnerability, with
a payoff riexp(t

i,∗
exp) for exploiting it for ti,∗exp days. Typi-

cally, riexp(t
i,∗
exp) should be a nondecreasing function with

respect to ti,∗exp since the exploit payoff for each day is
non-negative. Note that ti,∗exp is the actual exploit time of
player i, which might be different from player i’s action
tiexp if another player is involved in the lifecycle of a
vulnerability. As shown in Fig. 1, if this is the lifecycle of a
vulnerability, when there is only player i, tiexp will always
be equal to ti,∗exp. However, if there is another player j, the
exploit would be terminated once player j discloses the
vulnerability.9

c) Disclosure payoff: The player i who is the first to disclose
the vulnerability gets a payoff ridisclose for vulnerability
disclosure. The payoff comes from three aspects: 1) the
software vendors associated with the player would benefit
from the disclosure—for instance, if the vulnerability is in
a CISCO router, then CISCO would benefit from such
a disclosure as they can improve their product, 2) the
entities associated with the player who have exposure
to the vulnerability (e.g., all users of CISCO routers if

8We consider only pure strategy of the two players as it is straightforward
and simple. We take it as a first step and leave the mixed strategy formulation
as future research.

9In practice, postdisclosure exploit could still exist, the discussion of which is
more complex and is omitted in this article for the sake of simplicity. We leave
the formulation of a more complicated and inclusive model to future work.

https://www.zdnet.com/article/stuxnet-attackers-used-4-windows-zero-day-exploits/
https://www.securityfocus.com/
https://www.mitre.org/


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE SYSTEMS JOURNAL

the vulnerability happens to be in CISCO routers) would
benefit from the disclosure. and 2) the player gains a good
reputation for disclosing it.

The overall payoff of the two players can be formulated under
several cases, depending on whether the two players decide to
exploit the vulnerability, and which player discloses the vulner-
ability first. Note that we only write down the payoff of player 1
as the payoff of player 2 can be derived similarly. Recall that
the disclosure time T i

disclose is the sum of 1) the discovery time
T i
disco, 2) the develop time duration T i

dev, and 3) the exploit time
duration tiexp, i.e., T i

disclose = T i
disco + T i

dev + tiexp.
Case 1: Neither of the two players decide to exploit, i.e.,

b1 = b2 = 0. In this case, the players decide to disclose the
vulnerability once they discover it, and the payoff of the players
depend on the discovering time. In this case, T 1

disclose = T 1
disco,

T 2
disclose = T 2

disco. Thus

u1(a1, a2) =

{
r1disclose, if T 1

disclose ≤ T 2
disclose

0, if T 1
disclose > T 2

disclose.

Case 2: Player 1 decides to exploit, while player 2 decides not
to exploit, i.e., b1 = 1, b2 = 0. In this case, T 1

disclose = T 1
disco +

T 1
dev + t1exp, T

2
disclose = T 2

disco. Thus

u1(a1, a2) ={
−c1dev + r1exp(t

1
exp) + r1disclose, if T 1

disclose ≤ T 2
disclose

−c1dev + r1exp(t
1,∗
exp), if T 1

disclose > T 2
disclose

where t1,∗exp = T 2
disclose − T 1

disco − T 1
dev. As discussed earlier,

when T 1
disclose > T 2

disclose (i.e., player 2 discloses the vulner-
ability before player 1), the actual exploit time t1,∗exp of player
one is disclose time of player 2 minus the discovery time and
code development time of player 1.

Case 3: Player 1 decides to not exploit, while player 2
decides to exploit, i.e., b1 = 0, b2 = 1. In this case, T 1

disclose =
T 1
disco, T

2
disclose = T 2

disco + T 2
dev + t2exp. Thus

u1(a1, a2) =

{
r1disclose, if T 1

disclose ≤ T 2
disclose

0, if T 1
disclose > T 2

disclose.

Case 4: Both the players decide to exploit, i.e., b1 = b2 = 1. In
this case, T 1

disclose = T 1
disco + T 1

dev + t1exp, T
2
disclose = T 2

disco +
T 2
dev + t2exp. We have

u1(a1, a2) ={
−c1dev + r1exp(t

1
exp) + r1disclose, if T 1

disclose ≤ T 2
disclose

−c1dev + r1exp(t
1,∗
exp), if T 1

disclose > T 2
disclose

where t1,∗exp = T 2
disclose − T 1

disco − T 1
dev.

B. Pure Strategy Nash Equilibrium for One-Stage Game

Recall that in game theory, the best response of a player is the
strategy, which produces the most favorable outcome for that
player, given fixed strategies from the other players. As a result,
given the pure strategy aj = (bj , tjexp) of player j ∈ I , the best

response ai,∗ of the other player i ∈ I is

ai,∗ = argmax
ai

ui(ai, aj). (1)

For rational players in a competitive game, Nash equilibrium
is commonly adopted to denote the equilibrium outcome of the
game, where each player is assumed to know the equilibrium
strategies of the other player(s), and no player has anything
to gain by changing only their own strategy. Formally, we
formulate the pure strategy Nash equilibrium of the one-stage
cyber-warfare game as

a1,∗ = argmax
a1

u1(a1, a2,∗) (2)

a2,∗ = argmax
a2

u2(a1,∗, a2). (3)

C. Repeated Game

In practice, instead of competing over only a single vulnera-
bility, there are usually a series of vulnerabilities, which emerge
over time. Naturally, we formulate this RCWG as a repeated
game.

Suppose V = 1, 2, . . . is a sequence of vulnerabilities that
occur over time. We can define the RCWG as G̃ = {Gv|v ∈ V},
where eachGv = (I,av,uv) is a one-stage game corresponding
to vulnerability v. In the RCWG, the objective of a player i ∈ I
is to maximize the overall payoff by playing a pure strategy av,i

for each vulnerability v ∈ V
max
〈av,i〉

∑
v∈V

uv,i(av,1, av,2) (4)

where uv,i is the payoff of player i ∈ I at vulnerability v ∈
V . Correspondingly, the pure strategy Nash equilibrium of the
RCWG can be formulated as

〈av,1,∗〉 = arg max
〈av,1〉

∑
v∈V

uv,1(av,1, av,2,∗) (5)

〈av,2,∗〉 = arg max
〈av,2〉

∑
v∈V

uv,1(av,1,∗, av,2). (6)

Since the payoff function for each stage game v ∈ V is in-
dependent of the strategies of the other stages, the solution of
the repeated game can be decomposed into computing the pure
strategy Nash equilibrium of each stage game in (2) and (3).

IV. SOLVING THE RCWG

As introduced earlier, the solution of the RCWG G̃ can be
decomposed into solving each stage game Gv for all v ∈ V .
In the following, we first present our solution algorithm for
the one-stage game under the assumption that both players
have complete information about the distribution of a set of
parameters such as the vulnerability discovery time, exploit
code development time length, etc. We, then, propose a novel
learning and playing framework to tackle the incomplete infor-
mation in the repeated game setting, which learns the probability
distributions for the set of parameters of the players, while
computing equilibrium strategies with the solution algorithm
for the one-stage game.
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A. Solving One-Stage Game With Alternated Stochastic
Optimization

1) Computing Best Response: As discussed in Section III-
A, at each stage game Gv , the payoff function of each
player depends on the joint strategy av as well as the set
of temporal parameters Tdisco, Tdev and the set of utility pa-
rameters cdev, rexp, rdisclose. Suppose α = (Tdisco, Tdev, cdev,
rexp, rdisclose) denotes a generic parameter vector. There is a
probability distribution function f i,k(αk) for the kth parame-
ter in α and each player i ∈ I . If we assume that the set of
parameter probability distributions are known to both players,
the best response of each player i described in (1) can be
specified as

ai,∗ = arg max
ai;α∼fi(α)

ui(ai, aj ;α) (7)

where f i(α) = Πkf
i,k(αk) is the joint probability distribution

of all the parameters. We see immediately that computing the
best response of a player is essentially a stochastic optimization
problem, since the objective function is stochastic. To solve this
stochastic optimization problem, we leverage a Monte Carlo
sampling approach, which is shown in Algorithm 1. The key idea
of the algorithm is to estimate the reward function u1(a1, a2;α)
with the N samples specified in lines 1–5.

The following proposition describes the computational com-
plexity of computing the best response of one player using the
proposed Algorithm 1.

Proposition 1: The computational complexity of Algo-
rithm 1 is O(N × |Ai|), where |Ai| is the cardinality of the
feasible action space Ai for player i.

Proof: It is easy to see that the complexity of computing
payoff of one feasible action ai ∈ Ai is O(1). Meanwhile,
we need to do |Ai| computations to obtain the payoffs of all
the feasible actions in Ai, and do N computations for all the
N samples. Therefore, the total computational complexity of
Algorithm 1 is O(N × |Ai|).

2) Computing One-Stage Game: We can, therefore, compute
the pure strategy Nash equilibrium of the one-stage game in
Algorithm 2, which alternately computes the best response
(using Algorithm 1) of each player until convergence, i.e.,
the best response of a player is the same for two consecu-
tive iterations. The alternate computation process terminates

when the differences |a1 − a1,∗| and |a2 − a2,∗| of the strate-
gies for two consecutive iterations are within a small threshold
ε > 0.

Remark: Due to the usage of Monte Carlo sampling as a
subroutine to compute the best response of a player, there is no
guarantee that the computed best response is the exact solution.
Therefore, the convergence of pure strategy Nash equilibrium in
Algorithm 2 is not theoretically guaranteed. However, we will
show via the empirical results in Section V that, with sufficient
sampling, Algorithm 2 converges for all the one-stage games
in 220 iterations, which takes, on average, within 20 s. The
significance of this finding about 220 iterations is to show that
despite the lack of a proof of convergence, Algorithm 2 does
converge in practice in a reasonable amount of time.

B. Learning Model Parameters

By computing the pure strategy Nash equilibrium of a one-
stage game Gv ∈ G̃, we assume that the probability distribution
f(α) of the parameters α is known to both players, i.e., we
assume a complete information game setting. However, in real-
ity, one player does not have exact knowledge of the parameter
values of the other, creating a major obstacle to the idea of
playing an equilibrium strategy for the players.

In order to address this, we propose a learning framework to
estimate the parameter distributions f i(α) as shown in Algo-
rithm 3. In this setting, each player maintains an initial set V0 of
vulnerabilities in their stockpile, in which the parameter values
(α = (Tdisco, Tdev, cdev, rexp, rdisclose)) of the vulnerabilities
are known (in the real world, these will likely be estimated by
national security and/or defense organizations). Using V0, each
player can learn a prior belief about the probability distribu-
tion of the parameters f(α) for the other player. During each
one-stage game v in the RCWG, the other player‘s parameter
values for different vulnerabilities are observed, together with
a player’s own parameter values, and the stockpile of known
vulnerabilities is updated as V = V ∪ {v}. After this, the belief
of the two players’ parameters is updated by refitting the proba-
bility distribution of the parameters from the new (i.e., updated)
stockpile of vulnerabilities V . This process continues iteratively
until the cyber-warfare game is over.
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V. EXPERIMENTAL EVALUATION

A. Experiment Setting

1) RCWG Simulation Environment: Because of the secretive
nature of vulnerability discovery and exploit usage by govern-
ments, data about many of the parameters in this article is not
easily available. For instance, we do not know tdisco, the time
when vulnerabilities were first discovered by a government, even
in cases where the government in question later did disclose
the vulnerability as well as in cases where the government in
question exploited the vulnerability (which was later discovered
as in the case of Stuxnet). For some attacks, we can estimate texp
as this can be obtained from the “first seen” dates maintained
by many cybersecurity vendors. Moreover, governments do not
seem to ever own up to carrying out cyberattacks. For instance,
the U.S. and Israeli governments have not stated that they carried
out the Stuxnet attacks, even though it has been widely reported
that they did so by highly authoritative and respective sources
such as [19].

Fortunately, we were able to get broad statistics on some of
these numbers from authoritative national security sources (viz.
the Rand Corporation) that we were able to use as the basis
for our experiments. Moreover, we note that a government that
needs to make these “disclose or exploit” decisions will have
knowledge of many of the parameters involved (see Section VIII)
when they make a decision.

To evaluate our proposed approach, we set up an RCWG
simulation environment, with each vulnerability-related param-
eter α (i.e., the variables that are mentioned in the lifecy-
cle of a vulnerability) being randomly generated following
a Normal distribution N (μ, σ), where μ and σ are, respec-
tively, the mean and standard deviation of the Normal/Gaussian
distribution.

While we do not have access to the true information of the
parameter distributions of the vulnerabilities, we would like our
RCWG simulation environment to be as close to the real world
as possible. To this end, we set most of the vulnerability-related
parameters according to the well-researched Rand Corporation
report by [1]. This report is based on a rich zero-day vulner-
ability dataset that contains more than 200 zero-day exploits
(and relevant disclosures) spanning 14 years from 2002 to
2016. The detailed setting of the parameters are described as
follows.

1) tdisco. Consistently with the statistics in [1], we set the
mean value of tdisco to 200 days with standard deviation
as 40 days, so tdisco ∼ N (200, 40). In practice, to avoid
non-negative values for tdisco, we use a truncated normal
distribution, and set the minimum and maximum values
as 40 and 360, respectively.

2) tdev. Ablon and Bogart [1] stated that the median time for
developing an exploit that leverages a zero-day vulnera-
bility is 22 days. Therefore, we set the mean value of tdev
as 22 days with standard deviation as 4.4 days. So tdev
∼ N (22, 4.4).10 Similarly, to avoid non-negative values
for tdev, we set the minimum and maximum values for
this variable as 4.4 and 39.6 days, respectively.11

3) rexploit. For simplicity, we normalize all the cost/payoff
related values throughout the experiment section by the
payoff of the first day’s exploit (i.e., we set the payoff
of the first day’s exploit as 1). In reality, the daily payoff
of an exploit is usually high at the beginning of exploit,
and decreases over time. To capture this characteristic, we
model this decaying effect of exploit payoff by using an
exponential decay function 0.95texp for the daily exploit
payoff.

4) cdev. Ablon and Bogart [1] reported that the average cost
for developing an exploit based on a zero-day vulnerability
is $ 30 000. So for simplicity, we set cdev ∼ N (6, 1.2) in
our model. The mean value is six times the payoff of the
first day’s exploit payoff, which is a reasonable amount.

5) rdisclose. Ablon and Bogart [1] stated that the average
reward for disclosing a zero-day vulnerability is $ 50 000,
which is 5/3 times the cost of developing the exploit code.
As a result, we set the mean value of cdev as 6× 5/3 =
10, and the standard deviation as 10/5 = 2. Therefore,
rdisclose ∼ N (10, 2), i.e., our simulation selects values for
rdisclose from the normal distribution with a mean of 10
and a standard deviation of 2.

6) Time span of a vulnerability. According to Ablon and
Bogart [1], the time span from discovering a major zero-
day vulnerability to disclosing the vulnerability takes 1.5
years, so in our model, we set the longest time period
from the emergence of a vulnerability to the time of its
disclosure to 600 days. This means that the players have a
maximum of 600 days to discover vulnerabilities, develop
the exploit code, and/or exploit the vulnerability to gain a
payoff in one-stage game.

7) Initial number of vulnerabilities. We assume that both
players have maintained a database of previously known
zero-day vulnerabilities, which enables them to have an
initial estimate of the vulnerabilities’ parameter distribu-
tions. We set the default value of this number as 10 and
we will evaluate settings with different numbers of initial
set of vulnerabilities.

Our RCWG simulator starts with an initial set of vulnerabil-
ities using which a strategic player would learn an initial belief

10We use a mean to standard deviation ratio of 5 throughout the experiments.
11Throughout this article, we set the min and max values of a variable to be

μ± 4σ. This is reasonable as 99.7% of values in a normal distribution are less
than 3 standard deviations from the mean.
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Fig. 2. Runtime analysis.

over the probability distributions of a vulnerability’s various
parameters. Whenever a new vulnerability emerges, the two
players will compete with each other on the new vulnerability
using certain strategies. Without loss of generality, we set player
1 to be the player we want to help (i.e., the good guy), while
player 2 is the opponent (i.e., the bad guy). Note both the
initial set of vulnerabilities and newly emerged vulnerabilities
are generated according to the above settings. After a stage game
[see (2) and (3)] is played by the two players, the vulnerability
is added to the known set of vulnerabilities and the players’
knowledge of the vulnerability parameters is updated. In total,
there are 150 vulnerabilities in our simulation.

2) Methodology Related Parameters: In this part, we de-
scribe the values of other parameters in the experiments, which
are related to the algorithms. In computing best response, we
set the number of samples N as 100. To compute the Nash
equilibrium for each one-stage game, we say that the equilibrium
converges when the strategies of both players do not change in
three consecutive iterations. We set the maximum number of
iterations as a certain number (e.g., 300), so the program stops
either an equilibrium solution is obtained or 300 iterations are
reached. Each experiment described in the following session is
run ten rounds to get the average payoff. A 95% confidence in-
terval is shown for each control experiment. The best response is
randomly initialized within a vulnerability’s maximum lifespan,
which is 600 days as described above.

B. Experiment Results

We now present the experimental evaluations of RCWG,
including its convergence and runtime analysis, as well as effec-
tiveness comparison with three baseline strategies.

1) Convergence and Runtime Evaluation:
a) Runtime analysis: Fig. 2 shows the runtime of RCWG,

where the x-axis is the number of maximally allowed iterations
in computing the Nash equilibrium for one-stage games (i.e.,
one vulnerability), and the y-axis is the running time in seconds.
It is easy to see that the runtime of RCWG is linear w.r.t. the
maximally allowed number of iterations until 220, and does not
increase with a larger number of iterations. This is because when
the number of iterations reaches 220, the algorithm converges
in practice. This conjecture is also supported by the following
convergence analysis results.

Fig. 3. Convergence analysis.

b) Convergence analysis: Fig. 3 presents the results of
experiments to determine the convergence properties of our
algorithm. The x-axis denotes the number of iterations for which
we run Algorithm 2 in a one-stage game, and the y-axis denotes
the absolute difference between player 1’s best response (t1,∗exp)
of the current iteration and that of the previous iteration. We
observe that as the number of iterations gets larger, the absolute
value of the difference between player 1’s best responses in two
consecutive iterations becomes smaller, and decreases to 0 after
around 220 iterations. Recall that the convergence condition
in the experiments is that the strategies of both players do not
change for three consecutive iterations. That is, if the absolute
difference of strategies for both players is 0 for two consecutive
iterations, the equilibrium converges. This, together with Fig. 2,
demonstrates that although theoretically not guaranteed, RCWG
usually is able to converge within 220 iterations in practice, and
is able to compute the pure Nash equilibrium for one-stage game
in 20 s on average.

We re-emphasize that the significance of the 220 iterations is
that it shows that in practice, RCWG converges in a reasonable
amount of time.

2) Effectiveness Evaluation: By default, we set the
vulnerability-related parameters of both players as described
in the above section. To fully evaluate the effectiveness
(i.e., obtained payoff) of our proposed algorithm against the
baselines under different settings, we conduct a series of
control experiments. See Table I for a summary of parameters
being evaluated. In the control experiments, we fix the
vulnerability-related parameters of player 2, and change one
of the parameters for player 1 (while keeping the others
unchanged).

We compare our proposed RCWG framework (solved us-
ing the learning and competing approach) with three baseline
strategies.

1) Random: which means the player uses a random strategy
for the exploit time texp.

2) Always exploit: which means the player always decides to
exploit the vulnerability (i.e., b = 1, and texp → ∞).

3) Always disclose: which means the player always discloses
the vulnerability upon discovery of it, i.e., b = 0.

In general, the simulation results show that our game-theoretic
RCWG model consistently returns the highest payoff under the
following various settings.
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TABLE I
SUMMARY OF PARAMETERS BEING EVALUATED IN OUR DESIGNED SYSTEM

Note that we fix the parameters of Player 2 and vary the parameter values of Player 1.

Fig. 4. Payoff comparison under varying vulnerability discovery time tdisco.

a) Payoff comparison under varying vulnerability discov-
ery time tdisco: In this experiment, we explore how variations in
the timing of vulnerability discoveries (which reveal an entity’s
ability to discover vulnerabilities) would affect the payoff of a
player. The result is shown in Fig. 4, where the x-axis denotes
the ratio of player 1’s vulnerability discovery time tdisco against
that of player 2. For instance, a value of 0.5 means that player
1 discovers vulnerabilities twice as fast as player 2 on average
(i.e., it takes a player half the time to discover vulnerabilities on
average). On the contrary, a value of 2 indicates the opposite.
The y-axis is the simulated payoff gained by player 1 using four
different strategies. We have the following key results.

1) The less time player 1 needs in order to discover a vulner-
ability, the higher payoff he/she gains.

2) The payoff of using our proposed learning and compet-
ing approach outperforms the three baselines mentioned
earlier (random, always exploit, and always disclose).

3) We can see that the payoff difference gained by RCWG
is decreasing when the tdisco ratio increases (especially
compared with “always disclose”) and when the ratio
is very large, the two lines converge. This is because
when the discovery time of vulnerabilities is very long,
it is more likely that the other player would disclose the
vulnerability even before player 1 discovers it. As a result,
when player 1’s ability to discover vulnerabilities is poor,
the optimal strategy for player 1 is to disclose the vulner-
abilities immediately after the discovery—but only if the
player gets payoffs through other means (e.g., supporting
his country’s software industry). This observation is also
supported by Fig. 5, where the x-axis is the same as Fig. 4,
and the y-axis is the equilibrium strategy of player 1.
We see that as player 1’s discovery time increases, the
equilibrium exploit time becomes shorter, and becomes
0 when t1disco = 3t2disco. Simply put, the implication is
that countries, which do not discover cyber-vulnerabilities
quickly and which have strong IT industries (e.g., Austria,

Fig. 5. Strategy comparison under varying vulnerability discovery time tdisco.

Fig. 6. Payoff comparison under varying vulnerability develop time. tdev.

some Scandinavian countries) may be better off disclos-
ing vulnerabilities that they discover. On the other hand,
countries that discover vulnerabilities relatively frequently
(which probably includes the U.S., Russia, China, etc.)
may have payoffs for exploitation compared to disclosure.

b) Payoff comparison under varying exploit code develop-
ment time tdev: Fig. 6 evaluates how tdev affects the payoff of
different approaches, where the x-axis denotes the ratio of player
1’s tdev against that of player 2. If a player has a relatively high
exploit code development time, then this means that its ability to
develop exploit code is weak. The y-axis is the simulated payoff.
We have the following observations.

1) The payoff obtained by our proposed RCWG approach
is significantly higher than the three baselines under all
ratios of player 1 development time versus that of player
2.

2) When tdev changes, the payoffs of different methods do
not change a lot. This is because tdev is very small when
compared with the discovery time and the overall time
span (600 days) of a vulnerability. As a result, tdev has very
limited effect on the obtained payoff. The same conclusion
can be supported by Fig. 7, where the x-axis is the same as
Fig. 7, and the y-axis is the equilibrium strategy. We can
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Fig. 7. Strategy comparison under varying vulnerability develop time tdev.

Fig. 8. Payoff comparison under varying cost of developing exploit code cdev.

see that the equilibrium strategy of RCWG barely changes
for different tdev values of player 1.

c) Payoff comparison under varying cost of developing
exploit code cdev: Fig. 8 evaluates how cdev influences the
payoff of different approaches, where the x-axis denotes the ratio
of player 1’s development cost cdev against that of player 2. For
instance, this ratio might be relatively high when comparing
the U.S. (player 1) versus China (player 2) as developments
costs in China are likely to be cheaper than those in the U.S.
because of lower salaries. Intuitively, a player who has a low
development cost cdev would have an advantage. The y-axis is
still the simulated payoff. We obtained the following results.

1) When cdev increases, the payoff of all approaches de-
creases, except for “always disclose,” which is approxi-
mately constant under varying cdev. This is intuitive since
all the other approaches would suffer a higher loss from
developing the exploit code due to the increasing cdev.

2) Consistently, our proposed RCWG gains a higher payoff
compared with all the baselines.

3) The line of RCWG converges with “always disclose”
when cdev gets too large. This is because when it is very
expensive to develop exploit code, there are no gains (and
there may even be losses) in exploiting a vulnerability,
and, therefore, the optimal strategy in this situation is to
disclose the vulnerability once it is discovered. Again,
this is supported by Fig. 9—when cdev of player 1 is too
large, the equilibrium strategy of player 1 converges with
“Always disclose.”

d) Payoff comparison under varying number of vulner-
abilities in the initial set: Fig. 10 evaluates the effect of the

Fig. 9. Strategy comparison under varying cost of developing exploit code
cdev.

Fig. 10. Payoff comparison under varying number of vulnerabilities in the
initial set.

Fig. 11. Strategy comparison under varying number of vulnerabilities in the
initial set.

scale of the initial set of vulnerabilities that are available to the
players, where the x-axis is the number of vulnerabilities that
are initially known to the players, and the y-axis is the simulated
payoff. Intuitively, having an initial stockpile of vulnerabilities
suggests that the player with the stockpile would have a better
understanding and estimation of the vulnerability parameters.
We again see from Fig. 10 that our RCWG approach consistently
outperforms the baselines regardless of the scale of the initial set
of vulnerabilities. Similarly, we also note from Fig. 11 that the
equilibrium strategy of player 1 does not change substantially
with the varying number of the initial set of vulnerabilities.

e) Payoff comparison under different fitting methods:
Fig. 12 compares the simulated payoff of player 1 under two
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Fig. 12. Payoff comparison under different fitting methods.

Fig. 13. Strategy comparison under different fitting methods.

different methods of fitting the vulnerability parameter distribu-
tions. As described earlier, we use the normal distribution as the
ground truth probability distribution for the properties of vulner-
abilities. In this experiment, we are interested in estimating what
happens if we do not assume that we have prior knowledge of the
type of probability distribution. We achieve this by comparing
two methods for fitting the probability distribution, i.e., one
using the same type of probability distribution function (Normal
distribution), and the other using a different type (Beta distribu-
tion). We see that the payoff gained by our proposed RCWG
decreases slightly, while the payoffs of other approaches (which
do not involve the parameter distribution learning process) do not
change. Nonetheless, the payoff of RCWG is still significantly
higher than all the baselines. Similarly, we can see from Fig. 13
that the equilibrium strategy only changes slightly under the two
different fitting methods.

VI. DISCX SYSTEM

In this section, we describe the DiscX system that we have
been building to better support organizations such as the U.S.
Government’s ERB in making their decisions with the insights
provided by a rigorous scientific analysis.

Suppose we work for a government agency that has discovered
a new vulnerability. The user first logs into the DiscX system
and sees two options as shown in Fig. 14(a). He/she can either
look at vulnerabilities that have been previously reported (either
by him/her or by others) or enter a new vulnerability that he/she
may have discovered. In the screenshot shown in Fig. 14(a), the
user wishes to see the vulnerability assigned the ID CVE-2018-
15982.12

12In real world usage, the vulnerability may not be assigned a CVE number
by Mitre/NIST—rather it might be assigned an internal ID by the discovering
organization.

Fig. 14(b) shows the resulting screen after this choice was
made by the user. The screen shows some information about the
vulnerability. For instance, the security researcher who found
the vulnerability might have input some information about it,
e.g., he expects the severity of the vulnerability to be 9.8 on a
0–10 point scale. He also may have input additional information,
e.g., that the tdev parameter is one month, meaning that it
would take about one month to develop and test an exploit
based on this vulnerability as shown in Fig. 14(c). Fig. 14(d)
additionally allows the user currently viewing the vulnerability
to update some of these assessments as also shown in Fig. 14(e).
Additionally, the DiscX system allows the security analyst to
post some comments on a discussion board [see Fig. 14(f)],
which can be read by other users. A video of the use of the
DiscX system is available online.13

VII. RELATED WORK

This section talks about the line of related works, includ-
ing optimal disclosure policy, vulnerability life-cycle analy-
sis, and economics, operation research, and game theory in
cybersecurity.

A. Optimal Disclosure Policy

Arora et al. [2] showed that full and public disclosure of
vulnerabilities allows vendors to respond faster in fixing vulner-
abilities, but there is a corresponding increase in the number of
attacks when this strategy is adopted. Choi et al. [7] examined the
effect of both a mandatory disclosure policy and bug bounty pro-
grams and found that mandatory disclosures are not beneficial
to companies, while bug bounty programs are more beneficial.
Cavusoglu et al. [6] stated that an optimal disclosure policy
depends on the risk of vulnerabilities before and after disclosure,
the cost structure of the vulnerable software’s user population,
and the motivation of the vendor to develop patches for the dis-
closed vulnerability. They also show that although early discov-
ery always improves social well-being, early warning systems
do not necessarily improve social well-being. Caulfield et al. [5]
presented a set of criteria that governments should use to find
the optimal strategy for disclosing a vulnerability, and provided
insights on how to achieve a repeatable decision-making process.
To the best of our knowledge, there are no previous works that
employ game theoretic models to help decision making of the
vulnerability disclosure process.

B. Vulnerability Lifecycle Analysis

Frei [11] studied the zero-day vulnerability lifecycle by di-
viding it into stages. Each stage reflects a specific state of the
vulnerability and has varying impacts on the targeted ecosystem
(users plus enterprise). The phases include a creation, discov-
ery, exploit, disclosure, patch availability, and patch installation
phase. Ablon and Bogart’s [1] detailed and excellent study
concluded that exploits in past zero-day took a median of 22 days
for development. Bilge and Dumitraş [3] found that on average,

13https://drive.google.com/open?id=1pE5RKVwiJfnmp7vOAgXbWq4z4OX-
Bx7K

https://drive.google.com/open{?}id$=$1pE5RKVwiJfnmp7vOAgXbWq4z4OX-Bx7K
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Fig. 14. Selected screenshots of the DiscX system.

a typical zero-day exploit lasts for 312 days in the wild before
detection. Frei et al. [12] pointed out that from 2001 to 2005,
95% of the exploits are available within a month of disclosure
of the vulnerability, a figure that is consistent with that in [1].

C. Economics, Operation Research, and Game Theory in
Cybersecurity

There has been much work on the use of game theory in
cybersecurity—we only discuss a relatively small number as
most of these efforts, although excellent, do not bear directly on
the problem studied here. Kannan and Telang [15] showed that
private companies, which make profits by disclosing vulnerabil-
ities without proper safeguards in place may sometimes lead to
higher risks of vulnerability exploits and, thus, are suboptimal.
Hewett et al. [13] presented a game-theoretic approach to ana-
lyze Smart Grid SCADA systems by establishing a sequential,
nonzero sum, two player game. Serra et al. [20] developed
Stackelberg game models, which enable a decision maker to
reason about the adversary’s maximal expected damage strategy
and find the optimal mix of deactivation of buggy software and
patching of vulnerabilities in order to minimize the maximal
damage caused by an intelligent adversary. Chung et al. [8]
proposed a game-theoretic model based on expert knowledge
to simulate the decision-making process involved in making
response to cybersecurity incidents, and determine the optimal
strategy to minimize damage caused by an incident. Edwards
et al. [10] proposed a game-theoretic model showing that the

best strategy for the victim in a cyberattack depends on the
kind of vulnerability, the knowledge level of the victim, the
different payoffs, and the belief to their opponents. Huang and
Zhu [14] developed a multistage Bayesian game framework to
protect cyber-physical systems proactively and holistically from
stealthy advanced persistent threat (APT) attackers under diverse
information structures.

To the best of our knowledge, none of the existing works
study whether and when to disclose a cyber-vulnerability from
the perspective of game theory. However, taking into account
the strategic behavior of the decision makers is key to making
optimal vulnerability disclosure strategies. Motivated by this,
we propose a simple, and yet intuitive RCWG model to help
decision makers in the vulnerability disclosure process.

VIII. REAL-WORLD USAGE AND FUTURE WORK

The parameters used by the RCWG framework tend to be
classified. But the good news is that the parameters are in fact
likely to be known to or reasonably estimated by the gov-
ernments (security/intelligence agencies) that are making the
“disclose or exploit” decision. In the rest of this section, we
assume that player 1 is the player who is making the disclose
or exploit decision. Clearly, a government will know when it
discovered a vulnerability tdisco. It will also have estimates from
its cybersecurity experts on the time tavail by when they will be
able to finish developing an exploit based on the vulnerability,
as well as expected costs cdev for developing the exploit code
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(e.g., in terms of person-months, any equipment, software, or
travel needed).

However, the government (player 1) will need to come up with
a model to assess its reward for exploiting versus disclosing.
This would depend very much on the nature of the exploit.
For instance, the 2015 hack of the U.S. Office of Personnel
Management (attributed to China) led to the theft of over 20 M
records. Estimating the payoff of these data to an adversary
poses a challenge. On the other hand, a distributed denial-of-
service (DDoS) attack such as the one on Wall Street banks in
the 2011–2013 time frame (attributed to Iran) cost the banks
tens of millions of dollars according to the American Banker
magazine.14 Estimating the reward gained by player 1 if they
make a decision to exploit, and estimating the reward gained
by the player if they choose to disclose therefore pose some
challenges that we are leaving for future work. We note that
a start has been made by several authors [4], [9], [17] and so
methods for estimating these rewards should build upon these
efforts.

In the real world, we note that there are many players involved
in the disclose or exploit process. In this article, we have chosen
to model this situation as a 2-player game involving the two
main combatants. However, in the real world, there can be other
players (e.g., security companies and independent hackers). An
important future work would be to develop a more complex
multiplayer model. One challenge in building such a model
is in gathering data about the additional new players and in
understanding their incentive/payoff structures.

IX. CONCLUSION

In this article, we presented a simple, yet insightful two-
player RCWG model to formulate the cyber-competition of
two entities over a series of cyber-vulnerabilities. The RCWG
is decomposed into several one-stage games, where in each
game the pure strategy Nash equilibrium is defined to describe
the equilibrium status of the one-stage cyber-competition. To
solve the formulated RCWG, we proposed a learning and com-
peting framework, where the learning process keeps updating
the believed parameter distributions of the vulnerabilities, and
the competing process computes whether and when to disclose
a newly found vulnerability based on the Nash equilibrium
strategy. Our experiment shows the following:

1) though theoretically not guaranteed, our algorithm al-
ways converges in 220 iterations (on average) in our
experiments—moreover, the convergence occurs in a mat-
ter of 20 s on average;

2) the use of our RCWG framework for deciding whether
to disclose or exploit a vulnerability yields a significantly
higher payoff for the player making the decision compared
with a set of three simple baseline strategies;

3) our simulation results show that countries, which develop
strengths in discovering vulnerabilities quickly and have a
lower cost for developing exploits, would gain substantial

14https://www.americanbanker.com/news/us-charges-iranian-hackers-in-
wall-street-cyber-attacks

payoffs by exploiting newly discovered vulnerabilities.
In contrast, countries, which are weaker in discovering
vulnerabilities, should tend to disclose the vulnerability
for higher payoffs—assuming they have a software in-
dustry that would be affected by the exploitation of the
vulnerabilities (India is an example that comes to mind).

In addition, we have developed DiscX, the first system (to the
best of our knowledge) that can be used by government agencies
to make the “disclose or exploit” decision. DiscX is intended to
augment the current decision-making procedure for “exploiting
versus disclosing” with a rigorous tool that uses agency experts‘
inputs to help agencies such as the U.S. Government’s ERB
arrive at an optimal solution.
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